S. Aljunid, Jianwei Lee, Martin Paesold, B. Chng, G. Maslennikov, C. Kurtsiefer
{"title":"Vibrational ground state cooling of a neutral atom in a tightly focused optical dipole trap","authors":"S. Aljunid, Jianwei Lee, Martin Paesold, B. Chng, G. Maslennikov, C. Kurtsiefer","doi":"10.1109/CLEOE.2011.5943303","DOIUrl":null,"url":null,"abstract":"It was recently shown that a single atom can efficiently scatter photons out of a focused coherent light beam [1, 2, 3]. The scattering probability is strongly dependent on a thermal motion of the atom and can be maximized if the atom is well localized at a focus. To achieve that, we implement a Raman sideband cooling technique that is commonly used in ion traps [4]. Our trap, formed by focused Gaussian light beam at 980nm, has characteristic frequencies of ν<inf>τ</inf> = 55 kHz and ν<inf>l</inf> = 7 kHz corresponding to transverse and longitudinal confinements. A single <sup>87</sup>Rb atom is loaded into the trap from an optical molasses. Two Raman beams couple the motional states of |F = 2〉 and |F = 1〉 manifolds with a Lamb-Dicke parameter η = 0.084 (Figure 1). The Raman beams are oriented such that momentum transfer occurs only along the strong confinement of the trap with ν<inf>τ</inf> = 55 kHz. The cooling sequence consists of following steps: (1) initial preparation of the atom in |F = 2,m<inf>F</inf> = −2〉 Zeeman state, (2) Raman transfer between the motional states |F = 2,m<inf>F</inf> = −2,N〉 and |F = 1,m<inf>F</inf> = −1,N − 1〉. (3) recycling the atomic population back to |F = 2,m<inf>F</inf> = −2〉 state via an optical pulse resonant to |5P<inf>3/2</inf>, F = 2〉 state thus removing a phonon via spontaneous emission.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"3 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5943303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It was recently shown that a single atom can efficiently scatter photons out of a focused coherent light beam [1, 2, 3]. The scattering probability is strongly dependent on a thermal motion of the atom and can be maximized if the atom is well localized at a focus. To achieve that, we implement a Raman sideband cooling technique that is commonly used in ion traps [4]. Our trap, formed by focused Gaussian light beam at 980nm, has characteristic frequencies of ντ = 55 kHz and νl = 7 kHz corresponding to transverse and longitudinal confinements. A single 87Rb atom is loaded into the trap from an optical molasses. Two Raman beams couple the motional states of |F = 2〉 and |F = 1〉 manifolds with a Lamb-Dicke parameter η = 0.084 (Figure 1). The Raman beams are oriented such that momentum transfer occurs only along the strong confinement of the trap with ντ = 55 kHz. The cooling sequence consists of following steps: (1) initial preparation of the atom in |F = 2,mF = −2〉 Zeeman state, (2) Raman transfer between the motional states |F = 2,mF = −2,N〉 and |F = 1,mF = −1,N − 1〉. (3) recycling the atomic population back to |F = 2,mF = −2〉 state via an optical pulse resonant to |5P3/2, F = 2〉 state thus removing a phonon via spontaneous emission.