4DEgo: ego-velocity estimation from high-resolution radar data

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Prashant Rai, N. Strokina, R. Ghabcheloo
{"title":"4DEgo: ego-velocity estimation from high-resolution radar data","authors":"Prashant Rai, N. Strokina, R. Ghabcheloo","doi":"10.3389/frsip.2023.1198205","DOIUrl":null,"url":null,"abstract":"Automotive radars allow for perception of the environment in adverse visibility and weather conditions. New high-resolution sensors have demonstrated potential for tasks beyond obstacle detection and velocity adjustment, such as mapping or target tracking. This paper proposes an end-to-end method for ego-velocity estimation based on radar scan registration. Our architecture includes a 3D convolution over all three channels of the heatmap, capturing features associated with motion, and an attention mechanism for selecting significant features for regression. To the best of our knowledge, this is the first work utilizing the full 3D radar heatmap for ego-velocity estimation. We verify the efficacy of our approach using the publicly available ColoRadar dataset and study the effect of architectural choices and distributional shifts on performance.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2023.1198205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Automotive radars allow for perception of the environment in adverse visibility and weather conditions. New high-resolution sensors have demonstrated potential for tasks beyond obstacle detection and velocity adjustment, such as mapping or target tracking. This paper proposes an end-to-end method for ego-velocity estimation based on radar scan registration. Our architecture includes a 3D convolution over all three channels of the heatmap, capturing features associated with motion, and an attention mechanism for selecting significant features for regression. To the best of our knowledge, this is the first work utilizing the full 3D radar heatmap for ego-velocity estimation. We verify the efficacy of our approach using the publicly available ColoRadar dataset and study the effect of architectural choices and distributional shifts on performance.
dego:从高分辨率雷达数据估计自我速度
汽车雷达允许感知环境在不利的能见度和天气条件。新的高分辨率传感器已经证明了在障碍物检测和速度调整之外的任务中的潜力,例如绘图或目标跟踪。提出了一种基于雷达扫描配准的端到端自我速度估计方法。我们的架构包括热图的所有三个通道的3D卷积,捕获与运动相关的特征,以及选择重要特征进行回归的注意机制。据我们所知,这是第一个利用全3D雷达热图进行自我速度估计的工作。我们使用公开可用的ColoRadar数据集验证了我们方法的有效性,并研究了架构选择和分布变化对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信