{"title":"Dual-phase-lag thermoelastic damping analysis of a functionally graded sandwich micro-beam resonators incorporating double nonlocal effects","authors":"Tengjie Wang, Wei Peng, Tianhu He","doi":"10.1177/03093247231194690","DOIUrl":null,"url":null,"abstract":"Functionally graded sandwich micro/nano-structures have attracted great attention due to the capability to resist high noise and thermal stress in a non-isothermal environment. Additionally, the design of high quality-factor micro/nano-resonators requires accurate estimation of their thermoelastic damping. However, the classical thermoelastic damping models fail at the micro/nano-scale due to the influences of the size-dependent effects related to heat transfer and elastic deformation. This work aims to investigate the influences of the size-dependent effects on the thermoelastic damping of functionally graded sandwich micro-beam resonators by combining the nonlocal dual-phase-lag heat conduction model and the nonlocal elasticity model. It is assumed that the functionally graded sandwich micro-beam resonators consist of a ceramic core and functionally graded surfaces. The energy equation and the transverse motion equation are derived. The analytical expression of thermoelastic damping is obtained by complex frequency method. Numerical results are analyzed for the effects of the thermal nonlocal parameter, the elastic nonlocal parameter, the power-law index, and the vibration modes on the thermoelastic damping of functionally graded sandwich micro-beam resonators. The results show that the thermoelastic damping of functionally graded sandwich micro-beam resonators can be adjusted by the suitably modified parameters, which strongly depends on the double nonlocal effects and the power-law index.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231194690","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Functionally graded sandwich micro/nano-structures have attracted great attention due to the capability to resist high noise and thermal stress in a non-isothermal environment. Additionally, the design of high quality-factor micro/nano-resonators requires accurate estimation of their thermoelastic damping. However, the classical thermoelastic damping models fail at the micro/nano-scale due to the influences of the size-dependent effects related to heat transfer and elastic deformation. This work aims to investigate the influences of the size-dependent effects on the thermoelastic damping of functionally graded sandwich micro-beam resonators by combining the nonlocal dual-phase-lag heat conduction model and the nonlocal elasticity model. It is assumed that the functionally graded sandwich micro-beam resonators consist of a ceramic core and functionally graded surfaces. The energy equation and the transverse motion equation are derived. The analytical expression of thermoelastic damping is obtained by complex frequency method. Numerical results are analyzed for the effects of the thermal nonlocal parameter, the elastic nonlocal parameter, the power-law index, and the vibration modes on the thermoelastic damping of functionally graded sandwich micro-beam resonators. The results show that the thermoelastic damping of functionally graded sandwich micro-beam resonators can be adjusted by the suitably modified parameters, which strongly depends on the double nonlocal effects and the power-law index.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).