A COMPARATIVE STUDY OF COMMON EDGE DETECTION OPERATORS IN DIGITAL IMAGE PROCESSING

Benjamin Kommey, John Kwame Dunyo, E. T. Tchao, Andrew Selasi Agbemenu
{"title":"A COMPARATIVE STUDY OF COMMON EDGE DETECTION OPERATORS IN DIGITAL IMAGE PROCESSING","authors":"Benjamin Kommey, John Kwame Dunyo, E. T. Tchao, Andrew Selasi Agbemenu","doi":"10.46565/jreas.2021.v06i04.001","DOIUrl":null,"url":null,"abstract":"Edge detection is a fundamental process in image processing that extracts information about the image and facilitates image segmentation and feature extraction. It has many applications in various fields of computer vision. Thus, it is very necessary to understand the performance of each of these edge detectors. This paper presents a comparative study of common edge detection operators in image processing using mean squared error (MSE), peak signal to noise ratio (PSNR), and Execution time (Et). The paper shows the canny edge detector is computationally expensive but provides higher accuracy in edge detection with higher PSNR and lower MSE. The software tool used in the project is MATLAB SIMULINK R2020a.","PeriodicalId":14343,"journal":{"name":"International Journal of Research in Engineering and Applied Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research in Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46565/jreas.2021.v06i04.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Edge detection is a fundamental process in image processing that extracts information about the image and facilitates image segmentation and feature extraction. It has many applications in various fields of computer vision. Thus, it is very necessary to understand the performance of each of these edge detectors. This paper presents a comparative study of common edge detection operators in image processing using mean squared error (MSE), peak signal to noise ratio (PSNR), and Execution time (Et). The paper shows the canny edge detector is computationally expensive but provides higher accuracy in edge detection with higher PSNR and lower MSE. The software tool used in the project is MATLAB SIMULINK R2020a.
数字图像处理中常用边缘检测算子的比较研究
边缘检测是图像处理的一个基本过程,它提取图像信息,便于图像分割和特征提取。它在计算机视觉的各个领域都有广泛的应用。因此,了解这些边缘检测器的性能是非常必要的。本文利用均方误差(MSE)、峰值信噪比(PSNR)和执行时间(Et)对图像处理中常用的边缘检测算子进行了比较研究。结果表明,canny边缘检测器的计算成本较高,但具有较高的PSNR和较低的MSE,具有较高的边缘检测精度。本课题使用的软件工具是MATLAB SIMULINK R2020a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信