Modified Babenko’s Equation For Periodic Gravity Waves On Water Of Finite Depth

IF 0.8
E. Dinvay, N. Kuznetsov
{"title":"Modified Babenko’s Equation For Periodic Gravity Waves On Water Of Finite Depth","authors":"E. Dinvay, N. Kuznetsov","doi":"10.1093/qjmam/hbz011","DOIUrl":null,"url":null,"abstract":"\n A new operator equation for periodic gravity waves on water of finite depth is derived and investigated; it is equivalent to Babenko’s equation considered in Kuznetsov and Dinvay (Water Waves, 1, 2019). Both operators in the proposed equation are nonlinear and depend on the parameter equal to the mean depth of water, whereas each solution defines a parametric representation for a symmetric free surface profile. The latter is a component of a solution of the two-dimensional, nonlinear problem describing steady waves propagating in the absence of surface tension. Bifurcation curves (including a branching one) are obtained numerically for solutions of the new equation; they are compared with known results.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbz011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new operator equation for periodic gravity waves on water of finite depth is derived and investigated; it is equivalent to Babenko’s equation considered in Kuznetsov and Dinvay (Water Waves, 1, 2019). Both operators in the proposed equation are nonlinear and depend on the parameter equal to the mean depth of water, whereas each solution defines a parametric representation for a symmetric free surface profile. The latter is a component of a solution of the two-dimensional, nonlinear problem describing steady waves propagating in the absence of surface tension. Bifurcation curves (including a branching one) are obtained numerically for solutions of the new equation; they are compared with known results.
有限深度水中周期性重力波的修正Babenko方程
推导并研究了有限深度水中周期重力波的一个新的算子方程;它相当于库兹涅佐夫和迪威(水波,2019年1月)所考虑的巴年科方程。所提出的方程中的两个算子都是非线性的,并且依赖于等于平均水深的参数,而每个解都定义了对称自由表面剖面的参数表示。后者是二维非线性问题解的一个组成部分,该问题描述了在没有表面张力的情况下传播的稳定波。用数值方法得到了新方程解的分岔曲线(包括分支曲线);将它们与已知结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信