{"title":"Robust Bayesian learning for wireless RF energy harvesting networks","authors":"Nof Abuzainab, W. Saad, B. Maham","doi":"10.23919/WIOPT.2017.7959919","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of adversarial learning is studied for a wireless powered communication network (WPCN) in which a hybrid access point (HAP) seeks to learn the transmission power consumption profile of an associated wireless transmitter. The objective of the HAP is to use the learned estimate in order to determine the transmission power of the energy signal to be supplied to its associated device. However, such a learning scheme is subject to attacks by an adversary who tries to alter the HAP's learned estimate of the transmission power distribution in order to minimize the HAP's supplied energy. To build a robust estimate against such attacks, an unsupervised Bayesian learning method is proposed allowing the HAP to perform its estimation based only on the advertised transmisson power computed in each time slot. The proposed robust learning method relies on the assumption that the device's true transmission power is greater than or equal to advertised value. Then, based on the robust estimate, the problem of power selection of the energy signal by the HAP is formulated. The HAP optimal power selection problem is shown to be a discrete convex optimization problem, and a closed-form solution of the HAP's optimal transmission power is obtained. The results show that the proposed robust Bayesian learning scheme yields significant performance gains, by reducing the percentage of dropped transmitter's packets of about 85% compared to a conventional Bayesian learning approach. The results also show that these performance gains are achieved without jeopardizing the energy consumption of the HAP.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"15 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, the problem of adversarial learning is studied for a wireless powered communication network (WPCN) in which a hybrid access point (HAP) seeks to learn the transmission power consumption profile of an associated wireless transmitter. The objective of the HAP is to use the learned estimate in order to determine the transmission power of the energy signal to be supplied to its associated device. However, such a learning scheme is subject to attacks by an adversary who tries to alter the HAP's learned estimate of the transmission power distribution in order to minimize the HAP's supplied energy. To build a robust estimate against such attacks, an unsupervised Bayesian learning method is proposed allowing the HAP to perform its estimation based only on the advertised transmisson power computed in each time slot. The proposed robust learning method relies on the assumption that the device's true transmission power is greater than or equal to advertised value. Then, based on the robust estimate, the problem of power selection of the energy signal by the HAP is formulated. The HAP optimal power selection problem is shown to be a discrete convex optimization problem, and a closed-form solution of the HAP's optimal transmission power is obtained. The results show that the proposed robust Bayesian learning scheme yields significant performance gains, by reducing the percentage of dropped transmitter's packets of about 85% compared to a conventional Bayesian learning approach. The results also show that these performance gains are achieved without jeopardizing the energy consumption of the HAP.