{"title":"Kuznetsov’s Fano threefold conjecture via K3 categories and enhanced group actions","authors":"Arend Bayer, Alexander Perry","doi":"10.1515/crelle-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract We settle the last open case of Kuznetsov’s conjecture on the derived categories of Fano threefolds. Contrary to the original conjecture, we prove the Kuznetsov components of quartic double solids and Gushel–Mukai threefolds are never equivalent, as recently shown independently by Zhang. On the other hand, we prove the modified conjecture asserting their deformation equivalence. Our proof of nonequivalence combines a categorical Enriques-K3 correspondence with the Hodge theory of categories. Along the way, we obtain a categorical description of the periods of Gushel–Mukai varieties, which we use to resolve a conjecture of Kuznetsov and the second author on the birational categorical Torelli problem, as well as to give a simple proof of a theorem of Debarre and Kuznetsov on the fibers of the period map. Our proof of deformation equivalence relies on results of independent interest about obstructions to enhancing group actions on categories.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract We settle the last open case of Kuznetsov’s conjecture on the derived categories of Fano threefolds. Contrary to the original conjecture, we prove the Kuznetsov components of quartic double solids and Gushel–Mukai threefolds are never equivalent, as recently shown independently by Zhang. On the other hand, we prove the modified conjecture asserting their deformation equivalence. Our proof of nonequivalence combines a categorical Enriques-K3 correspondence with the Hodge theory of categories. Along the way, we obtain a categorical description of the periods of Gushel–Mukai varieties, which we use to resolve a conjecture of Kuznetsov and the second author on the birational categorical Torelli problem, as well as to give a simple proof of a theorem of Debarre and Kuznetsov on the fibers of the period map. Our proof of deformation equivalence relies on results of independent interest about obstructions to enhancing group actions on categories.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.