Bifurcations in von Kármán problem for rectangular, thin, elastic plate resting on elastic foundation of Winkler type

A. Borisovich, Jolanta Dymkowska, C. Szymczak
{"title":"Bifurcations in von Kármán problem for rectangular, thin, elastic plate resting on elastic foundation of Winkler type","authors":"A. Borisovich, Jolanta Dymkowska, C. Szymczak","doi":"10.1155/AMRX/2006/82959","DOIUrl":null,"url":null,"abstract":"This research is devoted to a study of stability problem of linearly elastic isotropic thin rectangular plate resting on linearly elastic foundation (of Winkler type). The plate is simply supported along all four edges and is subjected to a compressive loading of magnitude λ > 0 evenly distributed along two parallel edges, see Figure 1.1. If the loading parameter λ has a small value, then the plate is not deformed and flat (compared to Euler problem of elastic rod). If the loading parameter λ increases to the critical value λ1 (“Euler critical load,” “buckling load”), the plate bifurcation holds,which means that the plate buckles to the bent form. The main purpose of this paper is to give a precise mathematical description of the plate bifurcation. Let us consider corresponding mathematical model. The Cartesian coordinates system (u, v,w) presented in Figure 1.1 is assumed. Themiddle surface of the not buckled thin plate is presented in Cartesian coordinates (u, v,w) by the rectangle","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"1 1","pages":"82959"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/AMRX/2006/82959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This research is devoted to a study of stability problem of linearly elastic isotropic thin rectangular plate resting on linearly elastic foundation (of Winkler type). The plate is simply supported along all four edges and is subjected to a compressive loading of magnitude λ > 0 evenly distributed along two parallel edges, see Figure 1.1. If the loading parameter λ has a small value, then the plate is not deformed and flat (compared to Euler problem of elastic rod). If the loading parameter λ increases to the critical value λ1 (“Euler critical load,” “buckling load”), the plate bifurcation holds,which means that the plate buckles to the bent form. The main purpose of this paper is to give a precise mathematical description of the plate bifurcation. Let us consider corresponding mathematical model. The Cartesian coordinates system (u, v,w) presented in Figure 1.1 is assumed. Themiddle surface of the not buckled thin plate is presented in Cartesian coordinates (u, v,w) by the rectangle
基于Winkler型弹性地基的矩形薄板的von Kármán问题的分岔
本文研究了线弹性各向同性矩形薄板在线弹性(温克勒型)基础上的稳定性问题。板沿所有四个边简支,并受到λ > 0大小的压缩载荷均匀分布在两个平行边,见图1.1。如果加载参数λ的值很小,则板不变形且是平坦的(与弹性杆的欧拉问题相比)。如果加载参数λ增加到临界值λ1(“欧拉临界载荷”,“屈曲载荷”),则板分岔成立,这意味着板屈曲到弯曲形式。本文的主要目的是给出板分岔的精确数学描述。让我们考虑相应的数学模型。假设如图1.1所示的笛卡尔坐标系(u, v,w)。未屈曲薄板的中间表面由矩形表示为直角坐标系(u, v,w)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信