Uncertainty of Integral System Safety in Enginering

IF 1.8 Q2 ENGINEERING, MULTIDISCIPLINARY
K. Ziha
{"title":"Uncertainty of Integral System Safety in Enginering","authors":"K. Ziha","doi":"10.1115/1.4051939","DOIUrl":null,"url":null,"abstract":"\n The probabilistic safety analysis evaluates system reliability and failure probability by using statistics and probability theory but it cannot estimate the system uncertainties due to variabilities of system state probabilities. The article firstly resumes how the information entropy expresses the probabilistic uncertainties due to unevenness of probability distributions of system states. Next it argues that the conditional entropy with respect to system operational and failure states appropriately describes system redundancy and robustness, respectively. Finally the article concludes that the joint probabilistic uncertainties of reliability, redundancy and robustness defines the integral system safety. The concept of integral system safety allows more comprehensive definitions of favorable system functional properties, configuration evaluation, optimization and decision making in engineering.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The probabilistic safety analysis evaluates system reliability and failure probability by using statistics and probability theory but it cannot estimate the system uncertainties due to variabilities of system state probabilities. The article firstly resumes how the information entropy expresses the probabilistic uncertainties due to unevenness of probability distributions of system states. Next it argues that the conditional entropy with respect to system operational and failure states appropriately describes system redundancy and robustness, respectively. Finally the article concludes that the joint probabilistic uncertainties of reliability, redundancy and robustness defines the integral system safety. The concept of integral system safety allows more comprehensive definitions of favorable system functional properties, configuration evaluation, optimization and decision making in engineering.
工程中整体系统安全的不确定性
概率安全分析是利用统计和概率论来评估系统的可靠性和故障概率,但由于系统状态概率的可变性,无法估计系统的不确定性。本文首先回顾了信息熵如何表达由于系统状态概率分布的不均匀而引起的概率不确定性。其次,本文认为系统运行状态和故障状态的条件熵分别恰当地描述了系统冗余和鲁棒性。最后得出了可靠性、冗余性和鲁棒性的联合概率不确定性定义了整体系统的安全性。整体系统安全的概念允许在工程中更全面地定义有利的系统功能特性、配置评估、优化和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信