Monochromatic balanced components, matchings, and paths in multicolored complete bipartite graphs

IF 0.4 Q4 MATHEMATICS, APPLIED
Louis DeBiasio, Andr'as Gy'arf'as, Robert A. Krueger, Mikl'os Ruszink'o, G'abor N. S'arkozy
{"title":"Monochromatic balanced components, matchings, and paths in multicolored complete bipartite graphs","authors":"Louis DeBiasio, Andr'as Gy'arf'as, Robert A. Krueger, Mikl'os Ruszink'o, G'abor N. S'arkozy","doi":"10.4310/joc.2020.v11.n1.a2","DOIUrl":null,"url":null,"abstract":"It is well-known that in every $r$-coloring of the edges of the complete bipartite graph $K_{n,n}$ there is a monochromatic connected component with at least ${2n\\over r}$ vertices. It would be interesting to know whether we can additionally require that this large component be balanced; that is, is it true that in every $r$-coloring of $K_{n,n}$ there is a monochromatic component that meets both sides in at least $n/r$ vertices? \nOver forty years ago, Gy\\'arf\\'as and Lehel and independently Faudree and Schelp proved that any $2$-colored $K_{n,n}$ contains a monochromatic $P_n$. Very recently, Buci\\'c, Letzter and Sudakov proved that every $3$-colored $K_{n,n}$ contains a monochromatic connected matching (a matching whose edges are in the same connected component) of size $\\lceil n/3 \\rceil$. So the answer is strongly \"yes\" for $1\\leq r\\leq 3$. \nWe provide a short proof of (a non-symmetric version of) the original question for $1\\leq r\\leq 3$; that is, every $r$-coloring of $K_{m,n}$ has a monochromatic component that meets each side in a $1/r$ proportion of its part size. Then, somewhat surprisingly, we show that the answer to the question is \"no\" for all $r\\ge 4$. For instance, there are $4$-colorings of $K_{n,n}$ where the largest balanced monochromatic component has $n/5$ vertices in both partite classes (instead of $n/4$). Our constructions are based on lower bounds for the $r$-color bipartite Ramsey number of $P_4$, denoted $f(r)$, which is the smallest integer $\\ell$ such that in every $r$-coloring of the edges of $K_{\\ell,\\ell}$ there is a monochromatic path on four vertices. Furthermore, combined with earlier results, we determine $f(r)$ for every value of $r$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"66 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

It is well-known that in every $r$-coloring of the edges of the complete bipartite graph $K_{n,n}$ there is a monochromatic connected component with at least ${2n\over r}$ vertices. It would be interesting to know whether we can additionally require that this large component be balanced; that is, is it true that in every $r$-coloring of $K_{n,n}$ there is a monochromatic component that meets both sides in at least $n/r$ vertices? Over forty years ago, Gy\'arf\'as and Lehel and independently Faudree and Schelp proved that any $2$-colored $K_{n,n}$ contains a monochromatic $P_n$. Very recently, Buci\'c, Letzter and Sudakov proved that every $3$-colored $K_{n,n}$ contains a monochromatic connected matching (a matching whose edges are in the same connected component) of size $\lceil n/3 \rceil$. So the answer is strongly "yes" for $1\leq r\leq 3$. We provide a short proof of (a non-symmetric version of) the original question for $1\leq r\leq 3$; that is, every $r$-coloring of $K_{m,n}$ has a monochromatic component that meets each side in a $1/r$ proportion of its part size. Then, somewhat surprisingly, we show that the answer to the question is "no" for all $r\ge 4$. For instance, there are $4$-colorings of $K_{n,n}$ where the largest balanced monochromatic component has $n/5$ vertices in both partite classes (instead of $n/4$). Our constructions are based on lower bounds for the $r$-color bipartite Ramsey number of $P_4$, denoted $f(r)$, which is the smallest integer $\ell$ such that in every $r$-coloring of the edges of $K_{\ell,\ell}$ there is a monochromatic path on four vertices. Furthermore, combined with earlier results, we determine $f(r)$ for every value of $r$.
多色完全二部图中的单色平衡分量、匹配和路径
众所周知,在完全二部图$K_{n,n}$的每一个$r$ -着色边中,都存在一个至少有${2n\over r}$个顶点的单色连通分量。知道我们是否可以额外要求这个大组件保持平衡会很有趣;也就是说,在$K_{n,n}$的每个$r$ -着色中,是否存在至少在$n/r$个顶点上满足两边的单色分量?四十多年前,Gyárfás和Lehel以及独立的Faudree和Schelp证明了任何$2$色的$K_{n,n}$都包含一个单色的$P_n$。最近,buciki, Letzter和Sudakov证明了每个$3$ -colored $K_{n,n}$都包含一个大小为$\lceil n/3 \rceil$的单色连通匹配(其边缘处于相同连通分量的匹配)。所以对于$1\leq r\leq 3$,答案是肯定的。我们为$1\leq r\leq 3$提供了原始问题的简短证明(非对称版本);也就是说,$K_{m,n}$的每个$r$ -着色都有一个单色组件,该组件以其零件尺寸的$1/r$比例满足每个边。然后,有点令人惊讶的是,我们证明这个问题的答案对所有$r\ge 4$都是“否”。例如,$K_{n,n}$有$4$ -着色,其中最大的平衡单色分量在两个部分类中都有$n/5$个顶点(而不是$n/4$)。我们的构造是基于$P_4$的$r$ -color二部拉姆齐数的下界,记为$f(r)$,这是最小的整数$\ell$,使得在$K_{\ell,\ell}$的每一个$r$ -color边中都有四个顶点上的单色路径。此外,结合之前的结果,我们为$r$的每个值确定$f(r)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信