Samuel Ryecroft, A. Shaw, P. Fergus, P. Kot, K. Hashim, Laura Conway, Adam Moody
{"title":"A Novel Gesomin Detection Method Based on Microwave Spectroscopy","authors":"Samuel Ryecroft, A. Shaw, P. Fergus, P. Kot, K. Hashim, Laura Conway, Adam Moody","doi":"10.1109/DeSE.2019.00085","DOIUrl":null,"url":null,"abstract":"Geosmin contamination in water is a leading cause of odor related complaints to water companies in UK, tainting water with an earthy smell that is detectable by humans in quantities as low as 4 nanograms per liter. Current Geosmin detection methods depend on lab-based equipment, requiring samples to be collected and transported before Geosmin can be tested. This research presents a novel method for the detection of Geosmin in water using Microwave spectroscopy capable of detecting differentiating between four levels of Geosmin contamination: 5 ng/L, 10 ng/L, 0.5 mg/L and 1 mg/L as well as control samples. Frequencies within the 5.4 GHz to 5.9, 6.4 GHz to 6.5 GHz and 7.2 GHz to 7.5 GHz ranges showed significant separation between the sample classes.","PeriodicalId":6632,"journal":{"name":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","volume":"36 1","pages":"429-433"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE.2019.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Geosmin contamination in water is a leading cause of odor related complaints to water companies in UK, tainting water with an earthy smell that is detectable by humans in quantities as low as 4 nanograms per liter. Current Geosmin detection methods depend on lab-based equipment, requiring samples to be collected and transported before Geosmin can be tested. This research presents a novel method for the detection of Geosmin in water using Microwave spectroscopy capable of detecting differentiating between four levels of Geosmin contamination: 5 ng/L, 10 ng/L, 0.5 mg/L and 1 mg/L as well as control samples. Frequencies within the 5.4 GHz to 5.9, 6.4 GHz to 6.5 GHz and 7.2 GHz to 7.5 GHz ranges showed significant separation between the sample classes.