q-Deformation of Transonic Gas Equation

IF 0.3 Q4 MATHEMATICS
Sami H. Altoum
{"title":"q-Deformation of Transonic Gas Equation","authors":"Sami H. Altoum","doi":"10.3844/JMSSP.2018.88.93","DOIUrl":null,"url":null,"abstract":"In this study, the transonic gas equation will be considered. For q∈(0,1), q-deformation of transonic gas equation (q-transonic) are studied, we use q- derivative (or Jackson derivative) to solve transonic gas equation.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"11 1","pages":"88-93"},"PeriodicalIF":0.3000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.88.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, the transonic gas equation will be considered. For q∈(0,1), q-deformation of transonic gas equation (q-transonic) are studied, we use q- derivative (or Jackson derivative) to solve transonic gas equation.
跨音速气体方程的q-变形
在本研究中,将考虑跨声速气体方程。对于q∈(0,1),研究跨声速气体方程(q-transonic)的q-变形,利用q-导数(或Jackson导数)求解跨声速气体方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信