Task-oriented Function Detection Based on Operational Tasks

Yuchi Ishikawa, Haruya Ishikawa, S. Akizuki, Masaki Yamazaki, Y. Taniguchi, Y. Aoki
{"title":"Task-oriented Function Detection Based on Operational Tasks","authors":"Yuchi Ishikawa, Haruya Ishikawa, S. Akizuki, Masaki Yamazaki, Y. Taniguchi, Y. Aoki","doi":"10.1109/ICAR46387.2019.8981633","DOIUrl":null,"url":null,"abstract":"We propose novel representations for functions of an object, namely Task-oriented Function, which is improved upon the idea of Afforadance in the field of Robotics Vision. We also propose a convolutional neural network to detect task-oriented functions. This network takes as input an operational task as well as an RGB image and assign each pixel an appropriate label for every task. Task-oriented funciton makes it possible to descibe various ways to use an object because the outputs from the network differ depending on operational tasks. We introduce a new dataset for task-oriented function detection, which contains about 1200 RGB images and 6000 pixel-level annotations assuming five tasks. Our proposed method reached 0.80 mean IOU in our dataset.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"36 1","pages":"635-640"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose novel representations for functions of an object, namely Task-oriented Function, which is improved upon the idea of Afforadance in the field of Robotics Vision. We also propose a convolutional neural network to detect task-oriented functions. This network takes as input an operational task as well as an RGB image and assign each pixel an appropriate label for every task. Task-oriented funciton makes it possible to descibe various ways to use an object because the outputs from the network differ depending on operational tasks. We introduce a new dataset for task-oriented function detection, which contains about 1200 RGB images and 6000 pixel-level annotations assuming five tasks. Our proposed method reached 0.80 mean IOU in our dataset.
基于操作任务的面向任务的功能检测
我们提出了一种新的对象功能表示,即面向任务的函数,它是在机器人视觉领域的可预见性思想的基础上改进的。我们还提出了一种卷积神经网络来检测面向任务的函数。该网络将操作任务和RGB图像作为输入,并为每个任务分配每个像素适当的标签。面向任务的功能使得描述使用对象的各种方式成为可能,因为网络的输出根据操作任务而不同。我们引入了一个新的面向任务的函数检测数据集,该数据集包含大约1200张RGB图像和6000个像素级注释,假设有5个任务。我们提出的方法在我们的数据集中达到了0.80的平均IOU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信