A. A. Hamad, Faris Maher Ahmed, Mamoon Fattah Khalf, M. Thivagar
{"title":"Dynamic system linear models and Bayes classifier for time series classification in promoting sustainabilitys","authors":"A. A. Hamad, Faris Maher Ahmed, Mamoon Fattah Khalf, M. Thivagar","doi":"10.37868/hsd.v5i2.236","DOIUrl":null,"url":null,"abstract":"Research purpose: The current work introduces a novel method for time series discriminant analysis (DA). Proposing a version for the Bayes classifier employing Dynamic Linear Models, which we denote by BCDLM This article explores the application of DLMs and the Bayes Classifier in time series classification to promote application in sustainability across diverse sectors.\nMethod: This paper presents some computer simulation studies in which we generate four different scenarios corresponding to time series observations from various Dynamic Linear Models (DLMs). In Discriminant Analysis, we investigated strategies for estimating variance in models and compared the performance of the BCDLM with other common classifiers. Such datasets are composed of real-time series (data from SONY AIBO Robot and spectrometry of coffee types) and pseudo-time series (data from Swedish leaves adapted for time series). We also point out that algorithm was used to determine training and test sets in real-world applications.\nResults: Considering the real-time series examined in this paper, The results obtained indicate that the parametric approach developed represents a promising alternative for this class of DA problems, with observations of time series in a situation that is quite difficult in practice when we have series with large sizes with respect to the number of observations in the classes, even though more thorough studies are required.\nConclusions: It concludes that the BCDLM performed comparably to the results of the classifiers 1NN, RDA, NBND and NBK and superior to the methods LDA and QDA. This offers a powerful combination for time series classification, enabling accurate predictions and informed decision-making in areas such as energy consumption, waste management, and resource allocation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37868/hsd.v5i2.236","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research purpose: The current work introduces a novel method for time series discriminant analysis (DA). Proposing a version for the Bayes classifier employing Dynamic Linear Models, which we denote by BCDLM This article explores the application of DLMs and the Bayes Classifier in time series classification to promote application in sustainability across diverse sectors.
Method: This paper presents some computer simulation studies in which we generate four different scenarios corresponding to time series observations from various Dynamic Linear Models (DLMs). In Discriminant Analysis, we investigated strategies for estimating variance in models and compared the performance of the BCDLM with other common classifiers. Such datasets are composed of real-time series (data from SONY AIBO Robot and spectrometry of coffee types) and pseudo-time series (data from Swedish leaves adapted for time series). We also point out that algorithm was used to determine training and test sets in real-world applications.
Results: Considering the real-time series examined in this paper, The results obtained indicate that the parametric approach developed represents a promising alternative for this class of DA problems, with observations of time series in a situation that is quite difficult in practice when we have series with large sizes with respect to the number of observations in the classes, even though more thorough studies are required.
Conclusions: It concludes that the BCDLM performed comparably to the results of the classifiers 1NN, RDA, NBND and NBK and superior to the methods LDA and QDA. This offers a powerful combination for time series classification, enabling accurate predictions and informed decision-making in areas such as energy consumption, waste management, and resource allocation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.