{"title":"An Approach to Modeling Percussive Drilling Systems Submitted for Publication","authors":"Samuel Goldman, H. Flashner, Bing Yang","doi":"10.1115/1.4054472","DOIUrl":null,"url":null,"abstract":"\n A framework for modeling the transient response of percussive drilling systems is presented. The proposed approach is based on the Distributed Transfer Function Method (DTFM), which is a semi-analytical modeling technique. Experimental results obtained from a percussion testbed for The Regolith and Ice Drill for the Exploration of New Terrains (TRIDENT) were incorporated into this modeling technique. DTFM is shown to be a convenient, modular modeling approach, capable of handling complex boundary conditions and drill rod geometries. Moreover, this technique is computationally simple and allows for straightforward incorporation of experimentally measured boundary forcing via numerical convolution, as well as control of the frequency content in the transient response. An experimental study is used to demonstrate the ability of the proposed approach to characterize unknown boundary conditions.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054472","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A framework for modeling the transient response of percussive drilling systems is presented. The proposed approach is based on the Distributed Transfer Function Method (DTFM), which is a semi-analytical modeling technique. Experimental results obtained from a percussion testbed for The Regolith and Ice Drill for the Exploration of New Terrains (TRIDENT) were incorporated into this modeling technique. DTFM is shown to be a convenient, modular modeling approach, capable of handling complex boundary conditions and drill rod geometries. Moreover, this technique is computationally simple and allows for straightforward incorporation of experimentally measured boundary forcing via numerical convolution, as well as control of the frequency content in the transient response. An experimental study is used to demonstrate the ability of the proposed approach to characterize unknown boundary conditions.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.