Normalization of drug and therapeutic concepts with Thera-Py.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2023-11-08 eCollection Date: 2023-12-01 DOI:10.1093/jamiaopen/ooad093
Matthew Cannon, James Stevenson, Kori Kuzma, Susanna Kiwala, Jeremy L Warner, Obi L Griffith, Malachi Griffith, Alex H Wagner
{"title":"Normalization of drug and therapeutic concepts with Thera-Py.","authors":"Matthew Cannon, James Stevenson, Kori Kuzma, Susanna Kiwala, Jeremy L Warner, Obi L Griffith, Malachi Griffith, Alex H Wagner","doi":"10.1093/jamiaopen/ooad093","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The diversity of nomenclature and naming strategies makes therapeutic terminology difficult to manage and harmonize. As the number and complexity of available therapeutic ontologies continues to increase, the need for harmonized cross-resource mappings is becoming increasingly apparent. This study creates harmonized concept mappings that enable the linking together of like-concepts despite source-dependent differences in data structure or semantic representation.</p><p><strong>Materials and methods: </strong>For this study, we created Thera-Py, a Python package and web API that constructs searchable concepts for drugs and therapeutic terminologies using 9 public resources and thesauri. By using a directed graph approach, Thera-Py captures commonly used aliases, trade names, annotations, and associations for any given therapeutic and combines them under a single concept record.</p><p><strong>Results: </strong>We highlight the creation of 16 069 unique merged therapeutic concepts from 9 distinct sources using Thera-Py and observe an increase in overlap of therapeutic concepts in 2 or more knowledge bases after harmonization using Thera-Py (9.8%-41.8%).</p><p><strong>Conclusion: </strong>We observe that Thera-Py tends to normalize therapeutic concepts to their underlying active ingredients (excluding nondrug therapeutics, eg, radiation therapy, biologics), and unifies all available descriptors regardless of ontological origin.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 4","pages":"ooad093"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The diversity of nomenclature and naming strategies makes therapeutic terminology difficult to manage and harmonize. As the number and complexity of available therapeutic ontologies continues to increase, the need for harmonized cross-resource mappings is becoming increasingly apparent. This study creates harmonized concept mappings that enable the linking together of like-concepts despite source-dependent differences in data structure or semantic representation.

Materials and methods: For this study, we created Thera-Py, a Python package and web API that constructs searchable concepts for drugs and therapeutic terminologies using 9 public resources and thesauri. By using a directed graph approach, Thera-Py captures commonly used aliases, trade names, annotations, and associations for any given therapeutic and combines them under a single concept record.

Results: We highlight the creation of 16 069 unique merged therapeutic concepts from 9 distinct sources using Thera-Py and observe an increase in overlap of therapeutic concepts in 2 or more knowledge bases after harmonization using Thera-Py (9.8%-41.8%).

Conclusion: We observe that Thera-Py tends to normalize therapeutic concepts to their underlying active ingredients (excluding nondrug therapeutics, eg, radiation therapy, biologics), and unifies all available descriptors regardless of ontological origin.

用Thera-Py规范药物和治疗概念。
目的:命名法和命名策略的多样性使治疗术语难以管理和协调。随着可用治疗本体论的数量和复杂性不断增加,对协调的跨资源映射的需求变得越来越明显。本研究创建了协调的概念映射,使类似概念能够链接在一起,尽管数据结构或语义表示的源依赖差异。材料和方法:在这项研究中,我们创建了Thera-Py,这是一个Python包和web API,它使用9个公共资源和词典构建可搜索的药物和治疗术语概念。通过使用有向图方法,Thera-Py捕获任何给定治疗的常用别名、商品名称、注释和关联,并将它们合并到单个概念记录下。结果:我们强调使用Thera-Py从9个不同的来源创建了16069个独特的合并治疗概念,并观察到使用Thera-Py协调后,两个或更多知识库中治疗概念的重叠增加(9.8%-41.8%)。结论:我们观察到,therapy - py倾向于将治疗概念标准化到其潜在的有效成分(不包括非药物治疗,例如放射治疗,生物制剂),并统一所有可用的描述符,而不考虑本体论起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信