Kaiyuan Ji, Junmin Zhong, Long Cui, Xiaodi Wang, Li-Na Chen, Bolun Wen, Fan Yang, Wenfeng Deng, Xiuyu Pan, Lele Wang, Junjie Bao, YunShan Chen, Huishu Liu
{"title":"Exploring myometrial microenvironment changes at the single-cell level from nonpregnant to term pregnant states.","authors":"Kaiyuan Ji, Junmin Zhong, Long Cui, Xiaodi Wang, Li-Na Chen, Bolun Wen, Fan Yang, Wenfeng Deng, Xiuyu Pan, Lele Wang, Junjie Bao, YunShan Chen, Huishu Liu","doi":"10.1152/physiolgenomics.00067.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The microenvironment and cell populations within the myometrium play crucial roles in maintaining uterine structural integrity and protecting the fetus during pregnancy. However, the specific changes occurring at the single-cell level in the human myometrium between nonpregnant (NP) and term pregnant (TP) states remain unexplored. In this study, we used single-cell RNA sequencing (scRNA-Seq) and spatial transcriptomics (ST) to construct a transcriptomic atlas of individual cells in the myometrium of NP and TP women. Integrated analysis of scRNA-Seq and ST data revealed spatially distinct transcriptional characteristics and examined cell-to-cell communication patterns based on ligand-receptor interactions. We identified and categorized 87,845 high-quality individual cells into 12 populations from scRNA-Seq data of 12 human myometrium tissues. Our findings demonstrated alterations in the proportions of five subpopulations of smooth muscle cells in TP. Moreover, an increase in monocytic cells, particularly M2 macrophages, was observed in TP myometrium samples, suggesting their involvement in the anti-inflammatory response. This study provides unprecedented single-cell resolution of the NP and TP myometrium, offering new insights into myometrial remodeling during pregnancy.<b>NEW & NOTEWORTHY</b> Using single-cell RNA sequencing and spatial transcriptomics, the myometrium was examined at the single-cell level during pregnancy. We identified spatially distinct cell populations and observed alterations in smooth muscle cells and increased M2 macrophages in term pregnant women. These findings offer unprecedented insights into myometrial remodeling and the anti-inflammatory response during pregnancy. The study advances our understanding of pregnancy-related myometrial changes.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"32-47"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00067.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The microenvironment and cell populations within the myometrium play crucial roles in maintaining uterine structural integrity and protecting the fetus during pregnancy. However, the specific changes occurring at the single-cell level in the human myometrium between nonpregnant (NP) and term pregnant (TP) states remain unexplored. In this study, we used single-cell RNA sequencing (scRNA-Seq) and spatial transcriptomics (ST) to construct a transcriptomic atlas of individual cells in the myometrium of NP and TP women. Integrated analysis of scRNA-Seq and ST data revealed spatially distinct transcriptional characteristics and examined cell-to-cell communication patterns based on ligand-receptor interactions. We identified and categorized 87,845 high-quality individual cells into 12 populations from scRNA-Seq data of 12 human myometrium tissues. Our findings demonstrated alterations in the proportions of five subpopulations of smooth muscle cells in TP. Moreover, an increase in monocytic cells, particularly M2 macrophages, was observed in TP myometrium samples, suggesting their involvement in the anti-inflammatory response. This study provides unprecedented single-cell resolution of the NP and TP myometrium, offering new insights into myometrial remodeling during pregnancy.NEW & NOTEWORTHY Using single-cell RNA sequencing and spatial transcriptomics, the myometrium was examined at the single-cell level during pregnancy. We identified spatially distinct cell populations and observed alterations in smooth muscle cells and increased M2 macrophages in term pregnant women. These findings offer unprecedented insights into myometrial remodeling and the anti-inflammatory response during pregnancy. The study advances our understanding of pregnancy-related myometrial changes.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.