Spaces of embeddings: Nonsingular bilinear maps, chirality, and their generalizations

F. Frick, Michael C. Harrison
{"title":"Spaces of embeddings: Nonsingular bilinear maps, chirality, and their generalizations","authors":"F. Frick, Michael C. Harrison","doi":"10.1090/proc/15752","DOIUrl":null,"url":null,"abstract":"Given a space X we study the topology of the space of embeddings of X into $\\mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $\\mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $\\mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"09 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Given a space X we study the topology of the space of embeddings of X into $\mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $\mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $\mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.
嵌入空间:非奇异双线性映射、手性及其推广
给定一个空间X,我们通过X的三角组合学研究了X嵌入到$\mathbb{R}^d$的空间的拓扑结构。我们给出了对映到嵌入空间的球面的最大维数上界的一个简单组合公式。这一结果总结并推广了配合物不可嵌入$\mathbb{R}^d$、非奇异双线性映射的不存在性以及嵌入$\mathbb{R}^d$直至同位素的研究成果,如空间图的手性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信