Fekete's lemma for componentwise subadditive functions of two or more real variables

IF 0.3 Q4 MATHEMATICS
Silvio Capobianco
{"title":"Fekete's lemma for componentwise subadditive functions of two or more real variables","authors":"Silvio Capobianco","doi":"10.12697/acutm.2022.26.04","DOIUrl":null,"url":null,"abstract":"We prove an analogue of Fekete's subadditivity lemma for functions of several real variables which are subadditive in each variable taken singularly. This extends both the classical case for subadditive functions of one real variable, and a similar result for functions of integer variables. While doing so, we prove that the functions with the property mentioned above are bounded in every closed and bounded subset of their domain. The arguments expand on those in Chapter 6 of E. Hille's 1948 textbook.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"85 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove an analogue of Fekete's subadditivity lemma for functions of several real variables which are subadditive in each variable taken singularly. This extends both the classical case for subadditive functions of one real variable, and a similar result for functions of integer variables. While doing so, we prove that the functions with the property mentioned above are bounded in every closed and bounded subset of their domain. The arguments expand on those in Chapter 6 of E. Hille's 1948 textbook.
两个或两个以上实变量的分量次加性函数的Fekete引理
我们证明了Fekete子可加性引理的一个类似的例子,证明了几个实变量的函数在每个变量取奇时都是子可加的。这扩展了单实变量次加性函数的经典情况,以及整数变量函数的类似结果。在此过程中,我们证明了具有上述性质的函数在其定义域的每一个封闭有界子集中都是有界的。这些论点是在e·希尔1948年的教科书第6章的基础上展开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信