Spatio-Temporal Trend Analysis of the Brazilian Elections Based on Twitter Data

B. Praciano, J. Costa, J. Maranhao, Fábio L. L. Mendonça, Rafael Timóteo de Sousa Júnior, J. Prettz
{"title":"Spatio-Temporal Trend Analysis of the Brazilian Elections Based on Twitter Data","authors":"B. Praciano, J. Costa, J. Maranhao, Fábio L. L. Mendonça, Rafael Timóteo de Sousa Júnior, J. Prettz","doi":"10.1109/ICDMW.2018.00192","DOIUrl":null,"url":null,"abstract":"Text classification techniques and sentiment analysis can be applied to understand and predict the behavior of users by exploiting the massive amount of data available on social networks. In this context, trend analysis tools based on supervised machine learning are crucial. In this work, a framework for spatio-temporal trend analysis of Brazilian presidential election trends based on Twitter data is proposed. Experimental results show that the proposed framework presents good effectiveness in predicting election results as well as providing tweet author's geolocation and tweet timestamp. According to our results the spatio trend analysis applying our framework via SVM on the Twitter data returns an accuracy close to 90% when the Support Vector Machine (SVM) algortihm is applied for sentiment classification.","PeriodicalId":91379,"journal":{"name":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","volume":"22 1","pages":"1355-1360"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Text classification techniques and sentiment analysis can be applied to understand and predict the behavior of users by exploiting the massive amount of data available on social networks. In this context, trend analysis tools based on supervised machine learning are crucial. In this work, a framework for spatio-temporal trend analysis of Brazilian presidential election trends based on Twitter data is proposed. Experimental results show that the proposed framework presents good effectiveness in predicting election results as well as providing tweet author's geolocation and tweet timestamp. According to our results the spatio trend analysis applying our framework via SVM on the Twitter data returns an accuracy close to 90% when the Support Vector Machine (SVM) algortihm is applied for sentiment classification.
基于Twitter数据的巴西大选时空趋势分析
文本分类技术和情感分析可以通过利用社交网络上的大量可用数据来理解和预测用户的行为。在这种情况下,基于监督机器学习的趋势分析工具至关重要。在这项工作中,提出了一个基于Twitter数据的巴西总统选举趋势时空趋势分析框架。实验结果表明,该框架在预测选举结果以及提供推文作者地理位置和推文时间戳方面具有良好的有效性。根据我们的结果,当使用支持向量机(SVM)算法进行情感分类时,将我们的框架通过支持向量机(SVM)应用于Twitter数据的空间趋势分析返回的准确率接近90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信