COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

IF 0.3 Q4 MATHEMATICS, APPLIED
Seunggyu Lee, Chaeyoung Lee, H. Lee, Junseok Kim
{"title":"COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION","authors":"Seunggyu Lee, Chaeyoung Lee, H. Lee, Junseok Kim","doi":"10.12941/JKSIAM.2013.17.197","DOIUrl":null,"url":null,"abstract":"In this work, we numerically analyze a class of time discretizations for the Cahn-Hilliard equation. It is useful to investigate the performance of different schemes in terms of accuracy and efficiency since these schemes are frequently used in various science applications. In this work, comparisons of the explicit Euler’s, implicit Euler’s, Crank-Nicolson, semi-implicit Euler’s, linearly stabilized splitting, and non-linearly stabilized splitting schemes are presented. The continuous problem has the conservation of mass and the decrease of the total energy. We check the same properties hold for the discrete problem.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"57 1","pages":"197-207"},"PeriodicalIF":0.3000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2013.17.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 18

Abstract

In this work, we numerically analyze a class of time discretizations for the Cahn-Hilliard equation. It is useful to investigate the performance of different schemes in terms of accuracy and efficiency since these schemes are frequently used in various science applications. In this work, comparisons of the explicit Euler’s, implicit Euler’s, Crank-Nicolson, semi-implicit Euler’s, linearly stabilized splitting, and non-linearly stabilized splitting schemes are presented. The continuous problem has the conservation of mass and the decrease of the total energy. We check the same properties hold for the discrete problem.
cahn-hilliard方程不同数值格式的比较
在这项工作中,我们数值分析了Cahn-Hilliard方程的一类时间离散化。由于这些格式在各种科学应用中经常使用,因此研究不同格式在精度和效率方面的性能是有用的。在这项工作中,比较了显式欧拉,隐式欧拉,Crank-Nicolson,半隐式欧拉,线性稳定分裂和非线性稳定分裂格式。连续问题具有质量守恒和总能量的减小。我们检验了离散问题的相同性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信