BOUNDS ON THE CONDITIONAL AND AVERAGE TREATMENT EFFECT WITH UNOBSERVED CONFOUNDING FACTORS.

IF 1.1 4区 医学 Q4 CARDIAC & CARDIOVASCULAR SYSTEMS
Revista Brasileira De Cirurgia Cardiovascular Pub Date : 2022-10-01 Epub Date: 2022-10-27 DOI:10.1214/22-aos2195
Steve Yadlowsky, Hongseok Namkoong, Sanjay Basu, John Duchi, Lu Tian
{"title":"BOUNDS ON THE CONDITIONAL AND AVERAGE TREATMENT EFFECT WITH UNOBSERVED CONFOUNDING FACTORS.","authors":"Steve Yadlowsky, Hongseok Namkoong, Sanjay Basu, John Duchi, Lu Tian","doi":"10.1214/22-aos2195","DOIUrl":null,"url":null,"abstract":"<p><p>For observational studies, we study the sensitivity of causal inference when treatment assignments may depend on unobserved confounders. We develop a loss minimization approach for estimating bounds on the conditional average treatment effect (CATE) when unobserved confounders have a bounded effect on the odds ratio of treatment selection. Our approach is scalable and allows flexible use of model classes in estimation, including nonparametric and black-box machine learning methods. Based on these bounds for the CATE, we propose a sensitivity analysis for the average treatment effect (ATE). Our semiparametric estimator extends/bounds the augmented inverse propensity weighted (AIPW) estimator for the ATE under bounded unobserved confounding. By constructing a Neyman orthogonal score, our estimator of the bound for the ATE is a regular root-<math><mi>n</mi></math> estimator so long as the nuisance parameters are estimated at the <math><msub><mrow><mi>o</mi></mrow><mrow><mi>p</mi></mrow></msub><mfenced><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>-</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></mfenced></math> rate. We complement our methodology with optimality results showing that our proposed bounds are tight in certain cases. We demonstrate our method on simulated and real data examples, and show accurate coverage of our confidence intervals in practical finite sample regimes with rich covariate information.</p>","PeriodicalId":54481,"journal":{"name":"Revista Brasileira De Cirurgia Cardiovascular","volume":"21 1","pages":"2587-2615"},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Cirurgia Cardiovascular","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2195","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For observational studies, we study the sensitivity of causal inference when treatment assignments may depend on unobserved confounders. We develop a loss minimization approach for estimating bounds on the conditional average treatment effect (CATE) when unobserved confounders have a bounded effect on the odds ratio of treatment selection. Our approach is scalable and allows flexible use of model classes in estimation, including nonparametric and black-box machine learning methods. Based on these bounds for the CATE, we propose a sensitivity analysis for the average treatment effect (ATE). Our semiparametric estimator extends/bounds the augmented inverse propensity weighted (AIPW) estimator for the ATE under bounded unobserved confounding. By constructing a Neyman orthogonal score, our estimator of the bound for the ATE is a regular root-n estimator so long as the nuisance parameters are estimated at the opn-1/4 rate. We complement our methodology with optimality results showing that our proposed bounds are tight in certain cases. We demonstrate our method on simulated and real data examples, and show accurate coverage of our confidence intervals in practical finite sample regimes with rich covariate information.

未观察到的混杂因素对条件和平均治疗效果的影响。
对于观察性研究,我们研究了当治疗分配可能取决于未观察到的混杂因素时因果推理的敏感性。当未观察到的混杂因素对治疗选择的优势比有界影响时,我们开发了一种损失最小化方法来估计条件平均治疗效果(CATE)的界限。我们的方法是可扩展的,并且允许在估计中灵活使用模型类,包括非参数和黑盒机器学习方法。基于CATE的这些界限,我们提出了平均治疗效果(ATE)的敏感性分析。我们的半参数估计量扩展了有界不可观测混淆下ATE的增广逆倾向加权(AIPW)估计量。通过构造Neyman正交分数,我们对ATE的界的估计是一个正则的根n估计量,只要干扰参数以开放的1/4速率估计。我们用最优性结果补充了我们的方法,表明我们提出的界限在某些情况下是紧密的。我们在模拟和真实数据示例中演示了我们的方法,并在具有丰富协变量信息的实际有限样本中显示了我们的置信区间的准确覆盖范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Brasileira De Cirurgia Cardiovascular
Revista Brasileira De Cirurgia Cardiovascular CARDIAC & CARDIOVASCULAR SYSTEMS-SURGERY
CiteScore
2.10
自引率
0.00%
发文量
176
审稿时长
20 weeks
期刊介绍: Brazilian Journal of Cardiovascular Surgery (BJCVS) is the official journal of the Brazilian Society of Cardiovascular Surgery (SBCCV). BJCVS is a bimonthly, peer-reviewed scientific journal, with regular circulation since 1986. BJCVS aims to record the scientific and innovation production in cardiovascular surgery and promote study, improvement and professional updating in the specialty. It has significant impact on cardiovascular surgery practice and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信