Unsupervised Structure-Consistent Image-to-Image Translation

Shima Shahfar, Charalambos (Charis) Poullis
{"title":"Unsupervised Structure-Consistent Image-to-Image Translation","authors":"Shima Shahfar, Charalambos (Charis) Poullis","doi":"10.48550/arXiv.2208.11546","DOIUrl":null,"url":null,"abstract":"The Swapping Autoencoder achieved state-of-the-art performance in deep image manipulation and image-to-image translation. We improve this work by introducing a simple yet effective auxiliary module based on gradient reversal layers. The auxiliary module's loss forces the generator to learn to reconstruct an image with an all-zero texture code, encouraging better disentanglement between the structure and texture information. The proposed attribute-based transfer method enables refined control in style transfer while preserving structural information without using a semantic mask. To manipulate an image, we encode both the geometry of the objects and the general style of the input images into two latent codes with an additional constraint that enforces structure consistency. Moreover, due to the auxiliary loss, training time is significantly reduced. The superiority of the proposed model is demonstrated in complex domains such as satellite images where state-of-the-art are known to fail. Lastly, we show that our model improves the quality metrics for a wide range of datasets while achieving comparable results with multi-modal image generation techniques.","PeriodicalId":91444,"journal":{"name":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","volume":"77 1","pages":"3-21"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.11546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Swapping Autoencoder achieved state-of-the-art performance in deep image manipulation and image-to-image translation. We improve this work by introducing a simple yet effective auxiliary module based on gradient reversal layers. The auxiliary module's loss forces the generator to learn to reconstruct an image with an all-zero texture code, encouraging better disentanglement between the structure and texture information. The proposed attribute-based transfer method enables refined control in style transfer while preserving structural information without using a semantic mask. To manipulate an image, we encode both the geometry of the objects and the general style of the input images into two latent codes with an additional constraint that enforces structure consistency. Moreover, due to the auxiliary loss, training time is significantly reduced. The superiority of the proposed model is demonstrated in complex domains such as satellite images where state-of-the-art are known to fail. Lastly, we show that our model improves the quality metrics for a wide range of datasets while achieving comparable results with multi-modal image generation techniques.
无监督结构一致性图像到图像的翻译
交换自动编码器在深度图像处理和图像到图像转换方面实现了最先进的性能。我们通过引入一个简单而有效的基于梯度反转层的辅助模块来改进这项工作。辅助模块的损失迫使生成器学习用全零纹理代码重建图像,从而促进结构和纹理信息之间更好的分离。提出的基于属性的传输方法可以在不使用语义掩码的情况下,在保留结构信息的同时,实现对样式传输的精细控制。为了操作图像,我们将对象的几何形状和输入图像的一般样式编码为两个潜在代码,并附加一个强制结构一致性的约束。此外,由于辅助损失,训练时间大大减少。该模型的优越性在复杂领域得到了证明,如卫星图像,其中最先进的技术是已知失败的。最后,我们表明,我们的模型提高了大范围数据集的质量指标,同时实现了与多模态图像生成技术相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信