A study on conformal Ricci solitons and conformal Ricci almost solitons within the framework of almost contact geometry

IF 1 Q1 MATHEMATICS
S. Dey
{"title":"A study on conformal Ricci solitons and conformal Ricci almost solitons within the framework of almost contact geometry","authors":"S. Dey","doi":"10.15330/cmp.15.1.31-42","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to find some important Einstein manifolds using conformal Ricci solitons and conformal Ricci almost solitons. We prove that a Kenmotsu metric as a conformal Ricci soliton is Einstein if it is an $\\eta$-Einstein or the potential vector field $V$ is infinitesimal contact transformation or collinear with the Reeb vector field $\\xi$. Next, we prove that a Kenmotsu metric as gradient conformal Ricci almost soliton is Einstein if the Reeb vector field leaves the scalar curvature invariant. Finally, we have embellished an example to illustrate the existence of conformal Ricci soliton and gradient almost conformal Ricci soliton on Kenmotsu manifold.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.31-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to find some important Einstein manifolds using conformal Ricci solitons and conformal Ricci almost solitons. We prove that a Kenmotsu metric as a conformal Ricci soliton is Einstein if it is an $\eta$-Einstein or the potential vector field $V$ is infinitesimal contact transformation or collinear with the Reeb vector field $\xi$. Next, we prove that a Kenmotsu metric as gradient conformal Ricci almost soliton is Einstein if the Reeb vector field leaves the scalar curvature invariant. Finally, we have embellished an example to illustrate the existence of conformal Ricci soliton and gradient almost conformal Ricci soliton on Kenmotsu manifold.
几乎接触几何框架下共形Ricci孤子和共形Ricci几乎孤子的研究
本文的目的是利用共形Ricci孤子和几乎共形Ricci孤子找到一些重要的爱因斯坦流形。我们证明了Kenmotsu度规作为共形Ricci孤子是爱因斯坦,如果它是$\eta$-Einstein或势向量场$V$是无穷小接触变换或与Reeb向量场$\xi$共线。接下来,我们证明了如果Reeb向量场保持标量曲率不变,作为梯度共形里奇几乎孤子的Kenmotsu度规是爱因斯坦。最后,我们用一个例子说明了Kenmotsu流形上共形Ricci孤子和梯度几乎共形Ricci孤子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信