Veterinary drug Trametin obtained on the basis of Trametes pubescens xylotroph fungi: its effect on the biosynthesis of interferons and its prophylactic activity against calf respiratory diseases
{"title":"Veterinary drug Trametin obtained on the basis of Trametes pubescens xylotroph fungi: its effect on the biosynthesis of interferons and its prophylactic activity against calf respiratory diseases","authors":"V. Chkhenkeli","doi":"10.21285/2227-2925-2021-11-4-581-589","DOIUrl":null,"url":null,"abstract":"Given the spread of bacterial and viral diseases in young farm animals, the use of interferons and drugs to stimulate their biosynthesis has gained relevance. In a previous study, we examined the effect of a veterinary drug Trametin produced on the basis of Trametes pubescens (Shumach.: Fr.) Pilat. on the biosynthesis of interferons in the blood of mice. The present work is aimed at studying the biosynthesis dynamics of α- and γ-interferons when using Trametin and studying its prophylactic activity in calves. It is shown that a single oral administration of Trametin in doses ranging from 15 to 60 mg/kg causes a dose-dependent induction and production of γ-interferon in the blood of mice, whose maximum content reaches 1337.0±93.0 pg/mL at 48 h after administering a dose of 30 mg/kg. With a Trametin dose increase from 15 to 30 mg/kg, the level of α-interferon production rises to 1388.0±84.0 pg/mL at 48 h after administration. At a Cycloferon dose of 4.5 mg/kg, the production level of α-interferon and γ-interferon amounts to 1455.47±84.2 and 1447.0±90.0 pg/mL, respectively. The immunostimulatory properties of Trametin are confirmed by a scientific and economic experiment conducted using immunocompromised calves. In our studies, an immunological test of calf blood performed prior to and following the administration of Trimetin and Cycloferon constitutes criteria for the prophylactic activity of these drugs. The prophylactic efficacy of Trametin is confirmed by an increase in phagocytic activity by 10.5%, phagocytic index by 61.8%, and phagocytic number by 52.8%. After Trametin administration, the bactericidal activity of the serum increases by 60%. Cycloferon exhibits a similar immunostimulatory effect. Nonspecific prophylaxis using Trametin is shown to reduce the incidence of bacterial and viral respiratory diseases in young calves and generally improve their immunity.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2227-2925-2021-11-4-581-589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given the spread of bacterial and viral diseases in young farm animals, the use of interferons and drugs to stimulate their biosynthesis has gained relevance. In a previous study, we examined the effect of a veterinary drug Trametin produced on the basis of Trametes pubescens (Shumach.: Fr.) Pilat. on the biosynthesis of interferons in the blood of mice. The present work is aimed at studying the biosynthesis dynamics of α- and γ-interferons when using Trametin and studying its prophylactic activity in calves. It is shown that a single oral administration of Trametin in doses ranging from 15 to 60 mg/kg causes a dose-dependent induction and production of γ-interferon in the blood of mice, whose maximum content reaches 1337.0±93.0 pg/mL at 48 h after administering a dose of 30 mg/kg. With a Trametin dose increase from 15 to 30 mg/kg, the level of α-interferon production rises to 1388.0±84.0 pg/mL at 48 h after administration. At a Cycloferon dose of 4.5 mg/kg, the production level of α-interferon and γ-interferon amounts to 1455.47±84.2 and 1447.0±90.0 pg/mL, respectively. The immunostimulatory properties of Trametin are confirmed by a scientific and economic experiment conducted using immunocompromised calves. In our studies, an immunological test of calf blood performed prior to and following the administration of Trimetin and Cycloferon constitutes criteria for the prophylactic activity of these drugs. The prophylactic efficacy of Trametin is confirmed by an increase in phagocytic activity by 10.5%, phagocytic index by 61.8%, and phagocytic number by 52.8%. After Trametin administration, the bactericidal activity of the serum increases by 60%. Cycloferon exhibits a similar immunostimulatory effect. Nonspecific prophylaxis using Trametin is shown to reduce the incidence of bacterial and viral respiratory diseases in young calves and generally improve their immunity.