Tail bounds on hitting times of randomized search heuristics using variable drift analysis

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
P. Lehre, C. Witt
{"title":"Tail bounds on hitting times of randomized search heuristics using variable drift analysis","authors":"P. Lehre, C. Witt","doi":"10.1017/s0963548320000565","DOIUrl":null,"url":null,"abstract":"Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing, etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target state, for example the set of optimal solutions, without making additional statements on the distribution of this time. We address this lack by providing a general drift theorem that includes bounds on the upper and lower tail of the hitting time distribution. The new tail bounds are applied to prove very precise sharp-concentration results on the running time of a simple EA on standard benchmark problems, including the class of general linear functions. On all these problems, the probability of deviating by an r-factor in lower-order terms of the expected time decreases exponentially with r. The usefulness of the theorem outside the theory of RSHs is demonstrated by deriving tail bounds on the number of cycles in random permutations. All these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Finally, user-friendly specializations of the general drift theorem are given.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548320000565","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 9

Abstract

Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing, etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target state, for example the set of optimal solutions, without making additional statements on the distribution of this time. We address this lack by providing a general drift theorem that includes bounds on the upper and lower tail of the hitting time distribution. The new tail bounds are applied to prove very precise sharp-concentration results on the running time of a simple EA on standard benchmark problems, including the class of general linear functions. On all these problems, the probability of deviating by an r-factor in lower-order terms of the expected time decreases exponentially with r. The usefulness of the theorem outside the theory of RSHs is demonstrated by deriving tail bounds on the number of cycles in random permutations. All these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Finally, user-friendly specializations of the general drift theorem are given.
基于变量漂移分析的随机搜索启发式算法命中次数的尾界
漂移分析是进化算法、模拟退火等随机搜索启发式算法(RSHs)运行时分析的最新技术之一。绝大多数现有的漂移定理都给出了目标状态命中时间的期望值,例如最优解集,而没有对时间的分布作额外的说明。我们通过提供一个一般的漂移定理来解决这一不足,该定理包括命中时间分布的上下尾的边界。应用新的尾界证明了一个简单EA在标准基准问题(包括一类一般线性函数)上运行时间的非常精确的集中结果。在所有这些问题上,期望时间的低阶项中偏离r因子的概率随r呈指数下降。通过推导随机排列中循环数的尾界,证明了该定理在RSHs理论之外的有用性。所有这些结果都处理了位置相关(可变)的漂移,这种漂移没有被以前的带有尾界的漂移定理所涵盖。最后,给出了一般漂移定理的用户友好专门化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信