Simulation of Electron Transmittance and Tunneling Current in a Metal-Oxide- Semiconductor Capacitor with a High-K Dielectric Stack of HfO2 and SiO2 Using Exponential- and Airy-Wavefunction Approaches and a Transfer Matrix Method
K. Khairurrijal, F. A. Noor, M. Abdullah, S. Sukirno
{"title":"Simulation of Electron Transmittance and Tunneling Current in a Metal-Oxide- Semiconductor Capacitor with a High-K Dielectric Stack of HfO2 and SiO2 Using Exponential- and Airy-Wavefunction Approaches and a Transfer Matrix Method","authors":"K. Khairurrijal, F. A. Noor, M. Abdullah, S. Sukirno","doi":"10.5614/itb.ijp.2009.20.2.2","DOIUrl":null,"url":null,"abstract":"Analytical expressions of electron transmittance and tunneling current in a metal-oxide-semiconductor (MOS) capacitor with a high dielectric constant (high-K) oxide stack of HfO2 and SiO2 and a negative bias applied to the metal gate were derived. Exponential- and Airy-wavefunction approaches were employed in deriving analytically the electron transmittance and tunneling current. A numerical approach based on a transfer matrix method was used as a standard to evaluate the analytical approaches. It was found that the transmittances obtained under the exponential- and Airy-wavefunction approaches and the TMM are matching for low electron energies, while for higher energies only the transmittances calculated by employing the Airy- wavefunction approach is the same as those computed by using the TMM. It was also found that the tunneling currents calculated by using the exponential- and the Airy-wavefunction approaches and the TMM are equal for low oxide voltages (lower than 0.5 V), while for higher oxide voltages only the tunneling currents computed under the Airy-wavefunction approach fit those obtained under the TMM. Therefore, the Airy-wavefunction approach provides a better analytical model to tunneling processes in the MOS capacitor.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2009.20.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Analytical expressions of electron transmittance and tunneling current in a metal-oxide-semiconductor (MOS) capacitor with a high dielectric constant (high-K) oxide stack of HfO2 and SiO2 and a negative bias applied to the metal gate were derived. Exponential- and Airy-wavefunction approaches were employed in deriving analytically the electron transmittance and tunneling current. A numerical approach based on a transfer matrix method was used as a standard to evaluate the analytical approaches. It was found that the transmittances obtained under the exponential- and Airy-wavefunction approaches and the TMM are matching for low electron energies, while for higher energies only the transmittances calculated by employing the Airy- wavefunction approach is the same as those computed by using the TMM. It was also found that the tunneling currents calculated by using the exponential- and the Airy-wavefunction approaches and the TMM are equal for low oxide voltages (lower than 0.5 V), while for higher oxide voltages only the tunneling currents computed under the Airy-wavefunction approach fit those obtained under the TMM. Therefore, the Airy-wavefunction approach provides a better analytical model to tunneling processes in the MOS capacitor.