Engineered magnetization and exchange stiffness in direct-write Co–Fe nanoelements

S. Bunyaev, B. Budinská, R. Sachser, Qi Wang, K. Levchenko, Sebastian Knauer, A. Bondarenko, M. Urbánek, K. Y. Guslienko, A. Chumak, Michael Huth, G. Kakazei, O. Dobrovolskiy
{"title":"Engineered magnetization and exchange stiffness in direct-write Co–Fe nanoelements","authors":"S. Bunyaev, B. Budinská, R. Sachser, Qi Wang, K. Levchenko, Sebastian Knauer, A. Bondarenko, M. Urbánek, K. Y. Guslienko, A. Chumak, Michael Huth, G. Kakazei, O. Dobrovolskiy","doi":"10.1063/5.0036361","DOIUrl":null,"url":null,"abstract":"Media with engineered magnetization are essential building blocks in superconductivity, magnetism and magnon spintronics. However, the established thin-film and lithographic techniques insufficiently suit the realization of planar components with on-demand-tailored magnetization in the lateral dimension. Here, we demonstrate the engineering of the magnetic properties of CoFe-based nanodisks fabricated by the mask-less technique of focused electron beam induced deposition (FEBID). The material composition in the nanodisks is tuned \\emph{in-situ} via the e-beam waiting time in the FEBID process and their post-growth irradiation with Ga ions. The magnetization $M_s$ and exchange stiffness $A$ of the disks are deduced from perpendicular ferromagnetic resonance measurements. The achieved $M_s$ variation in the broad range from $720$ emu/cm$^3$ to $1430$ emu/cm$^3$ continuously bridges the gap between the $M_s$ values of such widely used magnonic materials as permalloy and CoFeB. The presented approach paves a way towards nanoscale 2D and 3D systems with controllable and space-varied magnetic properties.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0036361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Media with engineered magnetization are essential building blocks in superconductivity, magnetism and magnon spintronics. However, the established thin-film and lithographic techniques insufficiently suit the realization of planar components with on-demand-tailored magnetization in the lateral dimension. Here, we demonstrate the engineering of the magnetic properties of CoFe-based nanodisks fabricated by the mask-less technique of focused electron beam induced deposition (FEBID). The material composition in the nanodisks is tuned \emph{in-situ} via the e-beam waiting time in the FEBID process and their post-growth irradiation with Ga ions. The magnetization $M_s$ and exchange stiffness $A$ of the disks are deduced from perpendicular ferromagnetic resonance measurements. The achieved $M_s$ variation in the broad range from $720$ emu/cm$^3$ to $1430$ emu/cm$^3$ continuously bridges the gap between the $M_s$ values of such widely used magnonic materials as permalloy and CoFeB. The presented approach paves a way towards nanoscale 2D and 3D systems with controllable and space-varied magnetic properties.
直写Co-Fe纳米元件的工程磁化和交换刚度
具有工程磁化的介质是超导、磁学和磁振子自旋电子学的基本组成部分。然而,现有的薄膜和光刻技术不足以满足在横向尺寸上按需定制磁化的平面元件的实现。在这里,我们展示了用聚焦电子束诱导沉积(FEBID)的无掩膜技术制备的钴铁基纳米盘的磁性能的工程。通过FEBID过程中电子束的等待时间和生长后镓离子的辐照,可以\emph{原位}调整纳米片中的材料成分。磁碟的磁化强度$M_s$和交换刚度$A$由垂直铁磁共振测量得到。在$720$ emu/cm $^3$到$1430$ emu/cm $^3$的广泛范围内实现的$M_s$变化不断地弥补了诸如permalloy和CoFeB等广泛使用的磁材料$M_s$值之间的差距。所提出的方法为具有可控和空间变化磁性质的纳米级二维和三维系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信