Outage Analysis of Energy Efficiency in a Finite-Element-IRS Aided Communication System

Aaqib Bulla, S. M. Shah
{"title":"Outage Analysis of Energy Efficiency in a Finite-Element-IRS Aided Communication System","authors":"Aaqib Bulla, S. M. Shah","doi":"10.48550/arXiv.2205.08242","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of an energy efficient wireless communication system, assisted by a finite-element-intelligent reflecting surface (IRS). With no instantaneous channel state information (CSI) at the transmitter, we characterize the system performance in terms of the outage probability (OP) of energy efficiency (EE). Depending upon the availability of line-of-sight (LOS) paths, we analyze the system for two different channel models, viz. Rician and Rayleigh. For an arbitrary number of IRS elements $(N)$, we derive the approximate closed-form solutions for the OP of EE, using Laguerre series and moment matching methods. The analytical results are validated using the Monte-Carlo simulations. Moreover, we also quantify the rate of convergence of the derived expressions to the central limit theorem (CLT) approximations using the \\textit{Berry-Esseen} inequality. Further, we prove that the OP of EE is a strict pseudo-convex function of the transmit power and hence, has a unique global minimum. To obtain the optimal transmit power, we solve the OP of EE as a constrained optimization problem. To the best of our knowledge, the OP of EE as a performance metric, has never been previously studied in IRS-assisted wireless communication systems.","PeriodicalId":10679,"journal":{"name":"Comput. Phys. Commun.","volume":"45 1","pages":"101776"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Phys. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the performance of an energy efficient wireless communication system, assisted by a finite-element-intelligent reflecting surface (IRS). With no instantaneous channel state information (CSI) at the transmitter, we characterize the system performance in terms of the outage probability (OP) of energy efficiency (EE). Depending upon the availability of line-of-sight (LOS) paths, we analyze the system for two different channel models, viz. Rician and Rayleigh. For an arbitrary number of IRS elements $(N)$, we derive the approximate closed-form solutions for the OP of EE, using Laguerre series and moment matching methods. The analytical results are validated using the Monte-Carlo simulations. Moreover, we also quantify the rate of convergence of the derived expressions to the central limit theorem (CLT) approximations using the \textit{Berry-Esseen} inequality. Further, we prove that the OP of EE is a strict pseudo-convex function of the transmit power and hence, has a unique global minimum. To obtain the optimal transmit power, we solve the OP of EE as a constrained optimization problem. To the best of our knowledge, the OP of EE as a performance metric, has never been previously studied in IRS-assisted wireless communication systems.
有限元- irs辅助通信系统的能源效率中断分析
在本文中,我们研究了在有限单元智能反射面(IRS)辅助下的节能无线通信系统的性能。在发射机没有瞬时信道状态信息(CSI)的情况下,我们根据能量效率(EE)的中断概率(OP)来表征系统性能。根据视距(LOS)路径的可用性,我们分析了两种不同的信道模型,即专家和瑞利。对于任意数目的IRS单元$(N)$,我们利用Laguerre级数和矩匹配方法,导出了EE的OP的近似闭型解。通过蒙特卡罗仿真验证了分析结果。此外,我们还利用Berry\textit{-Esseen}不等式将导出表达式的收敛速度量化为中心极限定理(CLT)逼近。进一步证明了EE的OP是发射功率的严格伪凸函数,因此具有唯一的全局最小值。为了获得最优的发射功率,我们将EE的OP求解为约束优化问题。据我们所知,EE的OP作为性能指标,以前从未在irs辅助无线通信系统中进行过研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信