Parametric Optimization of Lathe Turning for Al-7075 Alloy Using Taguchi: An Experimental Study

G. B. Reddy
{"title":"Parametric Optimization of Lathe Turning for Al-7075 Alloy Using Taguchi: An Experimental Study","authors":"G. B. Reddy","doi":"10.9790/1684-1403063945","DOIUrl":null,"url":null,"abstract":"Turning is a machining process in which a cutting tool, commonly a non-rotary tool bit, exhibits a helical path on work piece material. The conventional metal removal process always influenced by the parameters such as, material machinability, cutting tool material, cutting speed and spindle speed, depth of cut, feed rate, tool geometry, and coolant. Optimizing these parameters is a daedal thing so that, Signal to noise (S/N), Analysis of variance (ANOVA) and Taguchi method using statistical software MINITAB are striving to solve these problems in the present scenario. The present paper is aimed at investigating parametric optimization of turning of 7075 Aluminium alloy using Taguchi L27 orthogonal array was employed for both Design of Experiment (DOE) and Signal to noise ratio (S/N) to analyze the effects of the selected parameters. The result demonstrates there are different effects of cutting parameters on cutting force, surface roughness and temperature for two samples and compared the samples. Furthermore, surface morphology of the machined specimen is obtained through SEM analysis. This work can be use full to determine the optimum cutting parameters for better machinability.","PeriodicalId":14565,"journal":{"name":"IOSR Journal of Mechanical and Civil Engineering","volume":"1 1","pages":"39-45"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Mechanical and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/1684-1403063945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Turning is a machining process in which a cutting tool, commonly a non-rotary tool bit, exhibits a helical path on work piece material. The conventional metal removal process always influenced by the parameters such as, material machinability, cutting tool material, cutting speed and spindle speed, depth of cut, feed rate, tool geometry, and coolant. Optimizing these parameters is a daedal thing so that, Signal to noise (S/N), Analysis of variance (ANOVA) and Taguchi method using statistical software MINITAB are striving to solve these problems in the present scenario. The present paper is aimed at investigating parametric optimization of turning of 7075 Aluminium alloy using Taguchi L27 orthogonal array was employed for both Design of Experiment (DOE) and Signal to noise ratio (S/N) to analyze the effects of the selected parameters. The result demonstrates there are different effects of cutting parameters on cutting force, surface roughness and temperature for two samples and compared the samples. Furthermore, surface morphology of the machined specimen is obtained through SEM analysis. This work can be use full to determine the optimum cutting parameters for better machinability.
田口法车削Al-7075合金的参数优化试验研究
车削是一种切削刀具(通常是非旋转刀头)在工件材料上呈现螺旋轨迹的加工过程。传统的金属去除工艺常常受到材料可加工性、刀具材料、切削速度和主轴转速、切削深度、进给速度、刀具几何形状和冷却剂等参数的影响。优化这些参数是一件复杂的事情,因此信噪比(S/N),方差分析(ANOVA)和田口法在统计软件MINITAB中努力解决这些问题。本文以7075铝合金车削加工参数优化为研究对象,采用田口L27正交阵列进行试验设计(DOE)和信噪比(S/N),分析所选参数的影响。结果表明,切削参数对两种样品的切削力、表面粗糙度和温度有不同的影响,并对两种样品进行了比较。此外,通过扫描电镜分析获得了加工试样的表面形貌。这项工作可用于确定最佳切削参数,以获得更好的可加工性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信