{"title":"On the cohomology rings of partially projective quaternionic Stiefel manifolds","authors":"G. E. Zhubanov, F. Y. Popelenskii","doi":"10.1070/SM9601","DOIUrl":null,"url":null,"abstract":"The quaternionic Stiefel manifold is the total space of a fibre bundle over the corresponding Grassmannian . The group acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds. The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in , where is prime, are calculated. Bibliography: 14 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"1 1","pages":"300 - 318"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9601","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The quaternionic Stiefel manifold is the total space of a fibre bundle over the corresponding Grassmannian . The group acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds. The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in , where is prime, are calculated. Bibliography: 14 titles.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in:
Mathematical analysis
Ordinary differential equations
Partial differential equations
Mathematical physics
Geometry
Algebra
Functional analysis