Bound state solution of the Schrodinger equation for the Woods–Saxon potential plus coulomb interaction by Nikiforov–Uvarov and supersymmetric quantum mechanics methods
{"title":"Bound state solution of the Schrodinger equation for the Woods–Saxon potential plus coulomb interaction by Nikiforov–Uvarov and supersymmetric quantum mechanics methods","authors":"E. Yazdankish","doi":"10.1142/S0218301321500233","DOIUrl":null,"url":null,"abstract":"The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"30 1","pages":"2150023"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218301321500233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.