Interval-type theorems concerning means

IF 0.1 Q4 MATHEMATICS
P. Pasteczka
{"title":"Interval-type theorems concerning means","authors":"P. Pasteczka","doi":"10.2478/aupcsm-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract Each family ℳ of means has a natural, partial order (point-wise order), that is M ≤ N iff M(x) ≤ N(x) for all admissible x. In this setting we can introduce the notion of interval-type set (a subset ℐ ⊂ℳ such that whenever M ≤ P ≤ N for some M, N ∈ℐ and P ∈ℳ then P ∈ℐ). For example, in the case of power means there exists a natural isomorphism between interval-type sets and intervals contained in real numbers. Nevertheless there appear a number of interesting objects for a families which cannot be linearly ordered. In the present paper we consider this property for Gini means and Hardy means. Moreover, some results concerning L∞ metric among (abstract) means will be obtained.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"31 1","pages":"37 - 43"},"PeriodicalIF":0.1000,"publicationDate":"2017-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Each family ℳ of means has a natural, partial order (point-wise order), that is M ≤ N iff M(x) ≤ N(x) for all admissible x. In this setting we can introduce the notion of interval-type set (a subset ℐ ⊂ℳ such that whenever M ≤ P ≤ N for some M, N ∈ℐ and P ∈ℳ then P ∈ℐ). For example, in the case of power means there exists a natural isomorphism between interval-type sets and intervals contained in real numbers. Nevertheless there appear a number of interesting objects for a families which cannot be linearly ordered. In the present paper we consider this property for Gini means and Hardy means. Moreover, some results concerning L∞ metric among (abstract) means will be obtained.
关于均值的区间型定理
每一族的均值具有一个自然的偏阶(点向阶),即M≤N,如果M(x)≤N(x)对于所有可容许的x。在这种情况下,我们可以引入区间型集的概念(一个子集,对于某些M,当M≤P≤N, N∈k, P∈k,则P∈k)。例如,在幂的情况下,意味着区间型集与实数中包含的区间之间存在自然同构。然而,对于一个不能线性排序的族,出现了许多有趣的对象。在本文中,我们考虑了Gini均值和Hardy均值的这个性质。此外,还得到了有关(抽象)均值间L∞度量的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信