High-temperature ion nitriding of T15K6 indexable carbide inserts

S. I. Bogodukhov, E. Kozik, E. V. Svidenko
{"title":"High-temperature ion nitriding of T15K6 indexable carbide inserts","authors":"S. I. Bogodukhov, E. Kozik, E. V. Svidenko","doi":"10.17073/0021-3438-2019-4-30-39","DOIUrl":null,"url":null,"abstract":"High-temperature (t = 800 ° С ) ion nitriding of T15K6 indexable carbide inserts was carried out with regard to the structure formation, phase composition, surface coating thickness ensuring an increase in their durability during the cutting test. It was found that hardness and microhardness values increase to 15 % after ion nitriding, however, with a temperature increase of more than 600 °C they gradually decrease to their initial values. Flexural strength after ion nitriding increases by 27 %. The fractography of fractures in the T15K6 carbide surface layers after ion nitriding for 1 and 2 hours at different temperatures showed a very branched fracture structure on edges with a fragile pattern inside the material. The analysis of T15K6 carbide surface layer microstructures after ion nitriding showed that as the ion nitriding temperature increases, the size of conglomerate carbides in the surface layer decreases. The depth of the T15K6 nitrided layer is 1 to 7 pm. Certain regularities of the effect of various ion nitriding time and temperature conditions on the performance characteristics of products made of TK group titanium-tungsten alloys are determined. At 600, 700, 800 °C ion nitriding temperatures and 1 to 8 hours isothermal exposure time, the increase in hardness, microhardness and tensile strength with lower wear was found when cutting T15K6 indexable carbide inserts. It is determined that as the ion nitriding time increases, intergranular destruction areas expand, while the intragranular areas shrink. In case of ion nitriding, a solid solution (Ti x W x )(C 1_y N y ) and (Co 1_x W x )(C 1_y N y ) supersaturated with tungsten is formed and three and four component compounds are released in the surface layer.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2019-4-30-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature (t = 800 ° С ) ion nitriding of T15K6 indexable carbide inserts was carried out with regard to the structure formation, phase composition, surface coating thickness ensuring an increase in their durability during the cutting test. It was found that hardness and microhardness values increase to 15 % after ion nitriding, however, with a temperature increase of more than 600 °C they gradually decrease to their initial values. Flexural strength after ion nitriding increases by 27 %. The fractography of fractures in the T15K6 carbide surface layers after ion nitriding for 1 and 2 hours at different temperatures showed a very branched fracture structure on edges with a fragile pattern inside the material. The analysis of T15K6 carbide surface layer microstructures after ion nitriding showed that as the ion nitriding temperature increases, the size of conglomerate carbides in the surface layer decreases. The depth of the T15K6 nitrided layer is 1 to 7 pm. Certain regularities of the effect of various ion nitriding time and temperature conditions on the performance characteristics of products made of TK group titanium-tungsten alloys are determined. At 600, 700, 800 °C ion nitriding temperatures and 1 to 8 hours isothermal exposure time, the increase in hardness, microhardness and tensile strength with lower wear was found when cutting T15K6 indexable carbide inserts. It is determined that as the ion nitriding time increases, intergranular destruction areas expand, while the intragranular areas shrink. In case of ion nitriding, a solid solution (Ti x W x )(C 1_y N y ) and (Co 1_x W x )(C 1_y N y ) supersaturated with tungsten is formed and three and four component compounds are released in the surface layer.
T15K6可转位硬质合金刀片的高温离子氮化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信