Power-Delay Trade-Offs in Complementary Metal-Oxide Semiconductor Circuits Using Self and Optimum Bulk Control

Shubham Tayal, Sunil Jadav
{"title":"Power-Delay Trade-Offs in Complementary Metal-Oxide Semiconductor Circuits Using Self and Optimum Bulk Control","authors":"Shubham Tayal, Sunil Jadav","doi":"10.1166/sl.2020.4211","DOIUrl":null,"url":null,"abstract":"Power dissipation and delay are the challenging issues in the design of VLSI circuits. This manuscript explores joint effect of Self-Bias transistors (SBTs) and Optimum Bulk Bias Technique (OBBT) on CMOS circuits. Earlier investigations on SBTs shows decrease in power dissipation of\n combinational as well as sequential circuits. We extend the analysis by studying the effect of OBBT on the static and dynamic power of CMOS circuits with SBTs coupled amid the pull-up/down network and the supply bars. Extensive SPICE simulations have been carried out in 0.18 μm technology.\n Results demonstrate that, a 73% drop in power in case of combinational circuits and 43% in case of sequential circuits can be accomplished by engaging OBBT in digital circuits. Trade-off between power and delay is also been presented.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"13 1","pages":"210-215"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power dissipation and delay are the challenging issues in the design of VLSI circuits. This manuscript explores joint effect of Self-Bias transistors (SBTs) and Optimum Bulk Bias Technique (OBBT) on CMOS circuits. Earlier investigations on SBTs shows decrease in power dissipation of combinational as well as sequential circuits. We extend the analysis by studying the effect of OBBT on the static and dynamic power of CMOS circuits with SBTs coupled amid the pull-up/down network and the supply bars. Extensive SPICE simulations have been carried out in 0.18 μm technology. Results demonstrate that, a 73% drop in power in case of combinational circuits and 43% in case of sequential circuits can be accomplished by engaging OBBT in digital circuits. Trade-off between power and delay is also been presented.
互补金属氧化物半导体电路中使用自我和最佳体控制的功率延迟权衡
功耗和延迟是超大规模集成电路设计中最具挑战性的问题。本文探讨了自偏置晶体管(sbt)和最佳体偏置技术(OBBT)在CMOS电路上的联合效应。早期对sbt的研究表明,组合电路和顺序电路的功耗都有所降低。在此基础上,我们进一步研究了OBBT对上拉/下拉网络和电源栅中sbt耦合的CMOS电路静态和动态功率的影响。在0.18 μm工艺下进行了大量的SPICE模拟。结果表明,在数字电路中加入OBBT可以使组合电路的功耗降低73%,顺序电路的功耗降低43%。同时提出了功率与时延的权衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensor Letters
Sensor Letters 工程技术-电化学
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信