Fractal Weyl bounds and Hecke triangle groups

Q3 Mathematics
Fr'ed'eric Naud, A. Pohl, Louis Soares
{"title":"Fractal Weyl bounds and Hecke triangle groups","authors":"Fr'ed'eric Naud, A. Pohl, Louis Soares","doi":"10.3934/ERA.2019.26.003","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma_{w}$ be a non-cofinite Hecke triangle group with cusp width $w>2$ and let $\\varrho\\colon\\Gamma_w\\to U(V)$ be a finite-dimensional unitary representation of $\\Gamma_w$. In this note we announce a new fractal upper bound for the Selberg zeta function of $\\Gamma_{w}$ twisted by $\\varrho$. In strips parallel to the imaginary axis and bounded away from the real axis, the Selberg zeta function is bounded by $\\exp\\left( C_{\\varepsilon} \\vert s\\vert^{\\delta + \\varepsilon} \\right)$, where $\\delta = \\delta_{w}$ denotes the Hausdorff dimension of the limit set of $\\Gamma_{w}$. This bound implies fractal Weyl bounds on the resonances of the Laplacian for all geometrically finite surfaces $X=\\widetilde{\\Gamma}\\backslash\\mathbb{H}$ where $\\widetilde{\\Gamma}$ is a finite index, torsion-free subgroup of $\\Gamma_w$.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2019.26.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Let $\Gamma_{w}$ be a non-cofinite Hecke triangle group with cusp width $w>2$ and let $\varrho\colon\Gamma_w\to U(V)$ be a finite-dimensional unitary representation of $\Gamma_w$. In this note we announce a new fractal upper bound for the Selberg zeta function of $\Gamma_{w}$ twisted by $\varrho$. In strips parallel to the imaginary axis and bounded away from the real axis, the Selberg zeta function is bounded by $\exp\left( C_{\varepsilon} \vert s\vert^{\delta + \varepsilon} \right)$, where $\delta = \delta_{w}$ denotes the Hausdorff dimension of the limit set of $\Gamma_{w}$. This bound implies fractal Weyl bounds on the resonances of the Laplacian for all geometrically finite surfaces $X=\widetilde{\Gamma}\backslash\mathbb{H}$ where $\widetilde{\Gamma}$ is a finite index, torsion-free subgroup of $\Gamma_w$.
分形Weyl界与Hecke三角群
设$\Gamma_{w}$为顶点宽度为$w>2$的非有限Hecke三角群,设$\varrho\colon\Gamma_w\to U(V)$为$\Gamma_w$的有限维酉表示。在这篇笔记中,我们宣布了一个新的分形上界,用于$\Gamma_{w}$被$\varrho$扭曲的Selberg zeta函数。在平行于虚轴并远离实轴的条形中,Selberg zeta函数以$\exp\left( C_{\varepsilon} \vert s\vert^{\delta + \varepsilon} \right)$为界,其中$\delta = \delta_{w}$表示$\Gamma_{w}$的极限集的Hausdorff维数。这个界意味着分形Weyl界在所有几何有限曲面$X=\widetilde{\Gamma}\backslash\mathbb{H}$的拉普拉斯共振上,其中$\widetilde{\Gamma}$是$\Gamma_w$的一个有限指标,无扭转子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信