On Compressive Sensing of Sparse Covariance Matrices Using Deterministic Sensing Matrices

Alihan Kaplan, V. Pohl, Dae Gwan Lee
{"title":"On Compressive Sensing of Sparse Covariance Matrices Using Deterministic Sensing Matrices","authors":"Alihan Kaplan, V. Pohl, Dae Gwan Lee","doi":"10.1109/ICASSP.2018.8461312","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of determining the sparse covariance matrix <tex>$\\mathbf{X}$</tex> of an unknown data vector <tex>$\\pmb{x}$</tex> by observing the covariance matrix <tex>$\\mathbf{Y}$</tex> of a compressive measurement vector <tex>$\\pmb{y}=\\mathbf{A}\\pmb{x}$</tex>. We construct deterministic sensing matrices <tex>$\\mathbf{A}$</tex> for which the recovery of a <tex>$k$</tex> -sparse covariance matrix <tex>$\\mathbf{X}$</tex> from <tex>$m$</tex> values of <tex>$\\mathbf{Y}$</tex> is guaranteed with high probability. In particular, we show that the number of measurements <tex>$m$</tex> scales linearly with the sparsity <tex>$k$</tex>.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"4019-4023"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper considers the problem of determining the sparse covariance matrix $\mathbf{X}$ of an unknown data vector $\pmb{x}$ by observing the covariance matrix $\mathbf{Y}$ of a compressive measurement vector $\pmb{y}=\mathbf{A}\pmb{x}$. We construct deterministic sensing matrices $\mathbf{A}$ for which the recovery of a $k$ -sparse covariance matrix $\mathbf{X}$ from $m$ values of $\mathbf{Y}$ is guaranteed with high probability. In particular, we show that the number of measurements $m$ scales linearly with the sparsity $k$.
基于确定性感知矩阵的稀疏协方差矩阵压缩感知研究
本文考虑了通过观察压缩测量向量$\pmb{Y} =\mathbf{a}\pmb{X}$的协方差矩阵$\mathbf{Y}$来确定未知数据向量$\pmb{X}$的稀疏协方差矩阵$\mathbf{X}$的问题。我们构造了确定性感知矩阵$\mathbf{A}$,对于该矩阵$ $k$ -稀疏协方差矩阵$ $ mathbf{X}$,从$\mathbf{Y}$的$m$值可以保证高概率恢复。特别地,我们证明了测量的数目$m$与稀疏度$k$呈线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信