Remarks on the rings of functions which have a finite numb er of di scontinuities

IF 0.6 Q3 MATHEMATICS
M. A. Ahmadi Zand, Zahra Khosravi
{"title":"Remarks on the rings of functions which have a finite numb er of di scontinuities","authors":"M. A. Ahmadi Zand, Zahra Khosravi","doi":"10.4995/AGT.2021.14332","DOIUrl":null,"url":null,"abstract":"Let X be an arbitrary topological space. F (X) denotes the set of all real-valued functions on X and C(X)F denotes the set of all f ∈ F (X) such that f is discontinuous at most on a finite set. It is proved that if r is a positive real number, then for any f ∈ C(X)F which is not a unit of C(X)F there exists g ∈ C(X)F such that g 6= 1 and f = g f . We show that every member of C(X)F is continuous on a dense open subset of X if and only if every non-isolated point of X is nowhere dense. It is shown that C(X)F is an Artinian ring if and only if the space X is finite. We also provide examples to illustrate the results presented herein. 2010 MSC: 54C40; 13C99.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"5 1","pages":"139"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/AGT.2021.14332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Let X be an arbitrary topological space. F (X) denotes the set of all real-valued functions on X and C(X)F denotes the set of all f ∈ F (X) such that f is discontinuous at most on a finite set. It is proved that if r is a positive real number, then for any f ∈ C(X)F which is not a unit of C(X)F there exists g ∈ C(X)F such that g 6= 1 and f = g f . We show that every member of C(X)F is continuous on a dense open subset of X if and only if every non-isolated point of X is nowhere dense. It is shown that C(X)F is an Artinian ring if and only if the space X is finite. We also provide examples to illustrate the results presented herein. 2010 MSC: 54C40; 13C99.
关于具有有限个不连续数的函数环的注释
设X是一个任意拓扑空间。F (X)表示X上所有实值函数和C(X)的集合,F表示所有F∈F (X)的集合,使得F在有限集合上最多不连续。证明了如果r是正实数,则对于任意不是C(X) f单位的f∈C(X) f,存在g∈C(X) f使得g 6= 1且f = g f。我们证明了C(X)F中的每一个元素在X的密集开子集上是连续的,当且仅当X的每一个非孤立点都不密集。证明了C(X)F是一个阿提尼环当且仅当空间X是有限的。我们还提供了示例来说明本文给出的结果。2010 msc: 54c40;13 c99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信