Evacuation schemes on Cayley graphs and non-amenability of groups

V. Guba
{"title":"Evacuation schemes on Cayley graphs and non-amenability of groups","authors":"V. Guba","doi":"10.1142/s0218196722500667","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a concept of an evacuation scheme on the Cayley graph of an infinite finitely generated group. This is a collection of infinite simple paths bringing all vertices to infinity. We impose a restriction that every edge can be used a uniformly bounded number of times in this scheme. An easy observation shows that existing of such a scheme is equivalent to non-amenability of the group. A special case happens if every edge can be used only once. These scheme are called pure. We obtain a criterion for existing of such a scheme in terms of isoperimetric constant of the graph. We analyze R.\\,Thompson's group $F$, for which the amenability property is a famous open problem. We show that pure evacuation schemes do not exist for the set of generators $\\{x_0,x_1,\\bar{x}_1\\}$, where $\\bar{x}_1=x_1x_0^{-1}$. However, the question becomes open if edges with labels $x_0^{\\pm1}$ can be used twice. Existing of pure evacuation scheme for this version is implied by some natural conjectures.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"22 1","pages":"1477-1494"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we introduce a concept of an evacuation scheme on the Cayley graph of an infinite finitely generated group. This is a collection of infinite simple paths bringing all vertices to infinity. We impose a restriction that every edge can be used a uniformly bounded number of times in this scheme. An easy observation shows that existing of such a scheme is equivalent to non-amenability of the group. A special case happens if every edge can be used only once. These scheme are called pure. We obtain a criterion for existing of such a scheme in terms of isoperimetric constant of the graph. We analyze R.\,Thompson's group $F$, for which the amenability property is a famous open problem. We show that pure evacuation schemes do not exist for the set of generators $\{x_0,x_1,\bar{x}_1\}$, where $\bar{x}_1=x_1x_0^{-1}$. However, the question becomes open if edges with labels $x_0^{\pm1}$ can be used twice. Existing of pure evacuation scheme for this version is implied by some natural conjectures.
Cayley图上的疏散方案和群体的不服从性
本文在无限有限生成群的Cayley图上引入了疏散方案的概念。这是无限简单路径的集合,所有的顶点都是无穷大的。在该方案中,我们施加了一个限制,即每条边可以使用一致有界的次数。一个简单的观察表明,这种方案的存在等于群体的不服从。如果每条边只能使用一次,就会出现一种特殊情况。这些方案被称为纯方案。用图的等周常数给出了这种格式存在的判据。我们分析了r \,Thompson群$F$,其可服从性质是一个著名的开放问题。我们证明了对于$\{x_0,x_1,\bar{x}_1\}$,其中$\bar{x}_1=x_1x_0^{-1}$的生成器集合不存在纯粹的疏散方案。然而,如果标签为$x_0^{\pm1}$的边可以使用两次,问题就变得开放了。一些自然的猜想暗示了该版本的纯疏散方案的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信