Applications of Titanium Dioxide Materials

Xiaoping Wu
{"title":"Applications of Titanium Dioxide Materials","authors":"Xiaoping Wu","doi":"10.5772/intechopen.99255","DOIUrl":null,"url":null,"abstract":"Titanium dioxide (TiO2) is a stable, non-toxic inorganic material. Because of very high refractive index, TiO2 has been widely used as a white pigment. The optimal particle sizes of TiO2 for pigment applications are around 250 nm. The pigmentary applications of TiO2 can be found in many common products such as paints, plastics, paper and ink. Global titanium dioxide pigment sales have reached several million tons annually. Titanium dioxide is also a semiconducting material. When excited by photons which have energy equal to or higher than the band gap of TiO2, electron/hole pairs can be generated. The dynamics of the photo-generated electron/hole pairs of TiO2 is fundamentally important to its photocatalytic properties. More recently, nano-structured TiO2 has raised a great deal of interests in research after the discoveries of the important potentials for applications. The enormous efforts have been put in the preparation, characterization, scientific understandings, and modifications of the photocatalytic properties of TiO2. The applications of nano-structured TiO2 can be now found in a wide range of areas including electronic materials, energy, environment, health & medicine, catalysts, etc. This chapter has discussed and highlighted the development of the applications of titanium dioxide materials in many of those areas.","PeriodicalId":23112,"journal":{"name":"Titanium Dioxide [Working Title]","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Titanium dioxide (TiO2) is a stable, non-toxic inorganic material. Because of very high refractive index, TiO2 has been widely used as a white pigment. The optimal particle sizes of TiO2 for pigment applications are around 250 nm. The pigmentary applications of TiO2 can be found in many common products such as paints, plastics, paper and ink. Global titanium dioxide pigment sales have reached several million tons annually. Titanium dioxide is also a semiconducting material. When excited by photons which have energy equal to or higher than the band gap of TiO2, electron/hole pairs can be generated. The dynamics of the photo-generated electron/hole pairs of TiO2 is fundamentally important to its photocatalytic properties. More recently, nano-structured TiO2 has raised a great deal of interests in research after the discoveries of the important potentials for applications. The enormous efforts have been put in the preparation, characterization, scientific understandings, and modifications of the photocatalytic properties of TiO2. The applications of nano-structured TiO2 can be now found in a wide range of areas including electronic materials, energy, environment, health & medicine, catalysts, etc. This chapter has discussed and highlighted the development of the applications of titanium dioxide materials in many of those areas.
二氧化钛材料的应用
二氧化钛(TiO2)是一种稳定、无毒的无机材料。由于TiO2具有很高的折射率,因此被广泛用作白色颜料。二氧化钛的最佳粒径为250纳米左右。二氧化钛的颜料应用可以在许多常见产品中找到,如油漆、塑料、纸张和油墨。全球二氧化钛颜料年销售量已达数百万吨。二氧化钛也是一种半导体材料。当被能量等于或高于TiO2带隙的光子激发时,可以产生电子/空穴对。TiO2的光生电子/空穴对动力学对其光催化性能至关重要。近年来,纳米结构TiO2在发现其重要的应用潜力后,引起了人们的极大兴趣。人们在制备、表征、科学理解和修饰TiO2的光催化性能方面付出了巨大的努力。纳米结构TiO2的应用范围广泛,包括电子材料、能源、环境、健康医药、催化剂等领域。本章讨论并重点介绍了二氧化钛材料在这些领域的应用进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信