Malware detection: program run length against detection rate

Philip O'Kane, S. Sezer, K. Mclaughlin, E. Im
{"title":"Malware detection: program run length against detection rate","authors":"Philip O'Kane, S. Sezer, K. Mclaughlin, E. Im","doi":"10.1049/iet-sen.2013.0020","DOIUrl":null,"url":null,"abstract":"N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. A key issue with dynamic analysis is the length of time a program has to be run to ensure a correct classification. The motivation for this research is to find the optimum subset of operational codes (opcodes) that make the best indicators of malware and to determine how long a program has to be monitored to ensure an accurate support vector machine (SVM) classification of benign and malicious software. The experiments within this study represent programs as opcode density histograms gained through dynamic analysis for different program run periods. A SVM is used as the program classifier to determine the ability of different program run lengths to correctly determine the presence of malicious software. The findings show that malware can be detected with different program run lengths using a small number of opcodes.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"24 1","pages":"42-51"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-sen.2013.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. A key issue with dynamic analysis is the length of time a program has to be run to ensure a correct classification. The motivation for this research is to find the optimum subset of operational codes (opcodes) that make the best indicators of malware and to determine how long a program has to be monitored to ensure an accurate support vector machine (SVM) classification of benign and malicious software. The experiments within this study represent programs as opcode density histograms gained through dynamic analysis for different program run periods. A SVM is used as the program classifier to determine the ability of different program run lengths to correctly determine the presence of malicious software. The findings show that malware can be detected with different program run lengths using a small number of opcodes.
恶意软件检测:程序运行长度对检测率
N-gram分析是一种使用字节、字符或文本字符串来研究程序结构的方法。本研究使用动态分析来研究恶意软件检测,使用基于N-gram分析的分类方法。动态分析的一个关键问题是必须运行程序以确保正确分类的时间长度。这项研究的动机是找到最佳的操作码(操作码)子集,使恶意软件的最佳指标,并确定多长时间的程序必须监控,以确保良性和恶意软件的准确支持向量机(SVM)分类。本研究中的实验将程序表示为通过动态分析获得的不同程序运行周期的操作码密度直方图。使用支持向量机作为程序分类器来确定不同程序运行长度正确判断恶意软件存在的能力。研究结果表明,恶意软件可以通过使用少量操作码来检测不同的程序运行长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信