Affine connections on singular warped products

Yong Wang
{"title":"Affine connections on singular warped products","authors":"Yong Wang","doi":"10.1142/S0219887821500766","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce semi-symmetric metric Koszul forms and semi-symmetric non-metric Koszul forms on singular semi-Riemannian manifolds. Semi-symmetric metric Koszul forms and semi-symmetric non-metric Koszul forms and their curvature of semi-regular warped products are expressed in terms of those of the factor manifolds. We also introduce Koszul forms associated to the almost product structure on singular almost product semi-Riemannian manifolds. Koszul forms associated to the almost product structure and their curvature of semi-regular almost product warped products are expressed in terms of those of the factor manifolds. Furthermore, we generalize the results in \\cite{St2} to singular multiply warped products.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887821500766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce semi-symmetric metric Koszul forms and semi-symmetric non-metric Koszul forms on singular semi-Riemannian manifolds. Semi-symmetric metric Koszul forms and semi-symmetric non-metric Koszul forms and their curvature of semi-regular warped products are expressed in terms of those of the factor manifolds. We also introduce Koszul forms associated to the almost product structure on singular almost product semi-Riemannian manifolds. Koszul forms associated to the almost product structure and their curvature of semi-regular almost product warped products are expressed in terms of those of the factor manifolds. Furthermore, we generalize the results in \cite{St2} to singular multiply warped products.
奇异翘曲积上的仿射连接
本文引入了奇异半黎曼流形上的半对称度量Koszul形式和半对称非度量Koszul形式。用因子流形的曲率表示半对称度量Koszul形式和半对称非度量Koszul形式及其半正则翘曲积的曲率。我们还引入了奇异概积半黎曼流形上与概积结构相关的Koszul形式。与几乎乘积结构相关的kozul形式及其半正则几乎乘积翘曲积的曲率用因子流形的曲率表示。进一步,我们将\cite{St2}的结果推广到奇异的多重翘曲积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信