Probability Mass Functions for which Sources have the Maximum Minimum Expected Length

Shivkumar K. Manickam
{"title":"Probability Mass Functions for which Sources have the Maximum Minimum Expected Length","authors":"Shivkumar K. Manickam","doi":"10.1109/NCC.2019.8732264","DOIUrl":null,"url":null,"abstract":"Let <tex>$\\mathcal{P}_{n}$</tex> be the set of all probability mass functions (PMFs) <tex>$(p_{1},p_{2},\\ \\ldots, p_{n})$</tex> that satisfy <tex>$p_{i} > 0$</tex> for <tex>$1\\leq i\\leq n$</tex>. Define the minimum expected length function <tex>$\\mathcal{L}_{D}:\\mathcal{P}_{n}\\rightarrow \\mathbb{R}$</tex> such that <tex>$\\mathcal{L}_{D}(P)$</tex> is the minimum expected length of a prefix code, formed out of an alphabet of size D, for the discrete memoryless source having <tex>$P$</tex> as its source distribution. It is well-known that the function <tex>$\\mathcal{L}_{D}$</tex> attains its maximum value at the uniform distribution. Further, when <tex>$n$</tex> is of the form <tex>$D^{m}$</tex>, with <tex>$m$</tex> being a positive integer, PMFs other than the uniform distribution at which <tex>$\\mathcal{L}_{D}$</tex> attains its maximum value are known. However, a complete characterization of all such PMFs at which the minimum expected length function attains its maximum value has not been done so far. This is done in this paper.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{P}_{n}$ be the set of all probability mass functions (PMFs) $(p_{1},p_{2},\ \ldots, p_{n})$ that satisfy $p_{i} > 0$ for $1\leq i\leq n$. Define the minimum expected length function $\mathcal{L}_{D}:\mathcal{P}_{n}\rightarrow \mathbb{R}$ such that $\mathcal{L}_{D}(P)$ is the minimum expected length of a prefix code, formed out of an alphabet of size D, for the discrete memoryless source having $P$ as its source distribution. It is well-known that the function $\mathcal{L}_{D}$ attains its maximum value at the uniform distribution. Further, when $n$ is of the form $D^{m}$, with $m$ being a positive integer, PMFs other than the uniform distribution at which $\mathcal{L}_{D}$ attains its maximum value are known. However, a complete characterization of all such PMFs at which the minimum expected length function attains its maximum value has not been done so far. This is done in this paper.
源具有最大最小期望长度的概率质量函数
设$\mathcal{P}_{n}$为所有概率质量函数(pmf)的集合$(p_{1},p_{2},\ \ldots, p_{n})$满足$p_{i} > 0$对于$1\leq i\leq n$。定义最小期望长度函数$\mathcal{L}_{D}:\mathcal{P}_{n}\rightarrow \mathbb{R}$,使得$\mathcal{L}_{D}(P)$是前缀代码的最小期望长度,由大小为D的字母组成,对于具有$P$作为其源分布的离散无内存源。众所周知,函数$\mathcal{L}_{D}$在均匀分布时达到最大值。此外,当$n$的形式为$D^{m}$时,$m$为正整数,则除了$\mathcal{L}_{D}$达到最大值的均匀分布之外的pmf是已知的。然而,到目前为止,还没有对所有这些最小期望长度函数达到最大值的PMFs进行完整的表征。本文就是这样做的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信