A novel online adaptive fast simple state of charge estimation for Lithium Ion batteries

Fereshteh Poloei, A. Bakhshai, Yanfei Liu
{"title":"A novel online adaptive fast simple state of charge estimation for Lithium Ion batteries","authors":"Fereshteh Poloei, A. Bakhshai, Yanfei Liu","doi":"10.1109/ICRERA.2017.8191193","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel simple adaptive and online approach to estimate the state of charge (SOC) in Lithium Ion (Li-Ion) batteries based on a new model parameter identification method. First, a novel discrete model for the Li-ion battery is developed. This model is the key step in the development of the proposed parameter estimation algorithm. The estimated parameters are used for on-line calculation of the battery's open circuit voltage (VOC) that is required for SOC estimation with no prior knowledge of battery parameters. The paper then proposes a moving window lease mean square approach to adaptively update the estimated parameters in a very fast and accurate manner. The SOC estimation will be updated at the end of every window cycle. The proposed method for SOC estimation provides a simple, fast, comprehensive, and precise estimation capable to track the changes of the model/battery parameters. Unlike other estimation strategies, only battery terminal voltage and current measurements are required.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"40 1","pages":"914-918"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a novel simple adaptive and online approach to estimate the state of charge (SOC) in Lithium Ion (Li-Ion) batteries based on a new model parameter identification method. First, a novel discrete model for the Li-ion battery is developed. This model is the key step in the development of the proposed parameter estimation algorithm. The estimated parameters are used for on-line calculation of the battery's open circuit voltage (VOC) that is required for SOC estimation with no prior knowledge of battery parameters. The paper then proposes a moving window lease mean square approach to adaptively update the estimated parameters in a very fast and accurate manner. The SOC estimation will be updated at the end of every window cycle. The proposed method for SOC estimation provides a simple, fast, comprehensive, and precise estimation capable to track the changes of the model/battery parameters. Unlike other estimation strategies, only battery terminal voltage and current measurements are required.
一种新颖的锂离子电池在线自适应快速简单充电状态估计方法
基于一种新的模型参数辨识方法,提出了一种新颖、简单、自适应的锂离子电池荷电状态在线估计方法。首先,建立了一种新的锂离子电池离散模型。该模型是所提出的参数估计算法开发的关键步骤。估计的参数用于在线计算电池的开路电压(VOC),这是在没有电池参数先验知识的情况下估计SOC所需的。在此基础上,提出了一种移动窗均方法,可以快速准确地自适应更新估计参数。SOC估计将在每个窗口周期结束时更新。所提出的SOC估算方法提供了一种简单、快速、全面、精确的估算方法,能够跟踪模型/电池参数的变化。与其他估计策略不同,只需要测量电池端子电压和电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信