Game theoretic decision making for autonomous vehicles’ merge manoeuvre in high traffic scenarios

M. Garzón, A. Spalanzani
{"title":"Game theoretic decision making for autonomous vehicles’ merge manoeuvre in high traffic scenarios","authors":"M. Garzón, A. Spalanzani","doi":"10.1109/ITSC.2019.8917314","DOIUrl":null,"url":null,"abstract":"This paper presents a game theoretic decision making process for autonomous vehicles. Its goal is to provide a solution for a very challenging task: the merge manoeuvre in high traffic scenarios. Unlike previous approaches, the proposed solution does not rely on vehicle-to-vehicle communication or any specific coordination, moreover, it is capable of anticipating both the actions of other players and their reactions to the autonomous vehicle’s movements.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"26 1","pages":"3448-3453"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents a game theoretic decision making process for autonomous vehicles. Its goal is to provide a solution for a very challenging task: the merge manoeuvre in high traffic scenarios. Unlike previous approaches, the proposed solution does not rely on vehicle-to-vehicle communication or any specific coordination, moreover, it is capable of anticipating both the actions of other players and their reactions to the autonomous vehicle’s movements.
大交通场景下自动驾驶车辆归并机动的博弈决策
提出了一种自动驾驶汽车的博弈决策过程。它的目标是为一项非常具有挑战性的任务提供解决方案:高流量场景下的合并机动。与之前的方法不同,提出的解决方案不依赖于车与车之间的通信或任何特定的协调,而且,它能够预测其他玩家的行动以及他们对自动驾驶汽车运动的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信