On bias problem in relevance feedback

Qianli Xing, Yi Zhang, Lanbo Zhang
{"title":"On bias problem in relevance feedback","authors":"Qianli Xing, Yi Zhang, Lanbo Zhang","doi":"10.1145/2063576.2063866","DOIUrl":null,"url":null,"abstract":"Relevance feedback is an effective approach to improve retrieval quality over the initial query. Typical relevance feedback methods usually select top-ranked documents for relevance judgments, then query expansion or model updating are carried out based on the feedback documents. However, the number of feedback documents is usually limited due to expensive human labeling. Thus relevant documents in the feedback set are hardly representative of all relevant documents and the feedback set is actually biased. As a result, the performance of relevance feedback will get hurt. In this paper, we first show how and where the bias problem exists through experiments. Then we study how the bias can be reduced by utilizing the unlabeled documents. After analyzing the usefulness of a document to relevance feedback, we propose an approach that extends the feedback set with carefully selected unlabeled documents by heuristics. Our experiment results show that the extended feedback set has less bias than the original feedback set and better performance can be achieved when the extended feedback set is used for relevance feedback.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"15 1","pages":"1965-1968"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Relevance feedback is an effective approach to improve retrieval quality over the initial query. Typical relevance feedback methods usually select top-ranked documents for relevance judgments, then query expansion or model updating are carried out based on the feedback documents. However, the number of feedback documents is usually limited due to expensive human labeling. Thus relevant documents in the feedback set are hardly representative of all relevant documents and the feedback set is actually biased. As a result, the performance of relevance feedback will get hurt. In this paper, we first show how and where the bias problem exists through experiments. Then we study how the bias can be reduced by utilizing the unlabeled documents. After analyzing the usefulness of a document to relevance feedback, we propose an approach that extends the feedback set with carefully selected unlabeled documents by heuristics. Our experiment results show that the extended feedback set has less bias than the original feedback set and better performance can be achieved when the extended feedback set is used for relevance feedback.
关于相关反馈中的偏差问题
相关性反馈是提高检索质量的有效方法。典型的相关性反馈方法通常是选择排名靠前的文档进行相关性判断,然后根据反馈的文档进行查询扩展或模型更新。然而,由于昂贵的人工标注,反馈文档的数量通常是有限的。因此,反馈集中的相关文档很难代表所有相关文档,反馈集实际上是有偏差的。因此,相关性反馈的性能将受到损害。在本文中,我们首先通过实验证明了偏差问题如何存在以及在哪里存在。然后,我们研究了如何利用未标记的文档来减少偏差。在分析了文档对相关反馈的有用性之后,我们提出了一种方法,通过启发式方法将反馈集扩展为精心选择的未标记文档。实验结果表明,扩展反馈集比原始反馈集具有更小的偏差,使用扩展反馈集进行相关反馈可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信