{"title":"GPU simulation of wake effects at the Horns Rev 1 offshore wind farm using the CFD porous disk wake model","authors":"T. Uchida, Teppei Tanaka, Ryuta Shizui, Hiroto Ichikawa, Ryo Takayama, Kazuomi Yahagi, Ryoya Okubo","doi":"10.1177/0309524X221132003","DOIUrl":null,"url":null,"abstract":"To verify the effectiveness of the GPU simulation of wake effects at a large-scale offshore wind farm, we ran an in-house large-eddy simulation (LES) solver with a CFD porous disk wake model for the Horns Rev 1 wind farm. For this numerical research, we prepared the latest workstation equipped with a Xeon W-2265 CPU and an NVIDIA RTX A6000 GPU. We clarified that the calculation speed of the single GPU of the NVIDIA RTX A6000 is approximately 10 times faster than the calculation speed of the Xeon W-2265. Careful data analysis and visualization of the unsteady turbulent flow fields obtained in the current LES study suggest that the mutual interference of the wakes developed by wind turbines may frequently form a local speed-up region around wind turbines, located on the downstream side of large offshore wind farms.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"1 1","pages":"408 - 421"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221132003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To verify the effectiveness of the GPU simulation of wake effects at a large-scale offshore wind farm, we ran an in-house large-eddy simulation (LES) solver with a CFD porous disk wake model for the Horns Rev 1 wind farm. For this numerical research, we prepared the latest workstation equipped with a Xeon W-2265 CPU and an NVIDIA RTX A6000 GPU. We clarified that the calculation speed of the single GPU of the NVIDIA RTX A6000 is approximately 10 times faster than the calculation speed of the Xeon W-2265. Careful data analysis and visualization of the unsteady turbulent flow fields obtained in the current LES study suggest that the mutual interference of the wakes developed by wind turbines may frequently form a local speed-up region around wind turbines, located on the downstream side of large offshore wind farms.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.