The Magnetic and Structural Properties of the Alloys of Iron Produced by Mechanical Alloying

{"title":"The Magnetic and Structural Properties of the Alloys of Iron Produced by Mechanical Alloying","authors":"","doi":"10.33140/ijnn.05.01.02","DOIUrl":null,"url":null,"abstract":"In this study, nanostructured powders, (Fe65Co35) 100-x Crx with (x=0, 10), were synthesized by a high-energy mechanical grinding process, usually used to obtain soft magnetic systems. For this purpose, the metal elements Fe, Co and Cr, of respective purities 99.9, 99.8 and 99.5% and of average size less than one hundred microns, were milled at different times, ranging from 1 hour to 36 hours. In a second step, the nanopowders obtained were characterized by several techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) techniques. The analysis of the results obtained showed the complete formation of the (Fe65Co35) and (Fe65Co35) 90Cr10 phases from 12 hours of grinding. For (Fe65Co35), the remnant field Br and the saturation magnetization Ms have similar evolutions namely, a decrease between 8h and 24h, followed by an increase until the end of the grinding. In addition, the high values of Br and Hc suggest that this system is magnetically hard. The presence of chrome in the ternary (Fe65Co35) 90Cr10 amplifies the maximum value of Hc, while maintaining a similar behavior.","PeriodicalId":91888,"journal":{"name":"International journal of nanotechnology and nanomedicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of nanotechnology and nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/ijnn.05.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, nanostructured powders, (Fe65Co35) 100-x Crx with (x=0, 10), were synthesized by a high-energy mechanical grinding process, usually used to obtain soft magnetic systems. For this purpose, the metal elements Fe, Co and Cr, of respective purities 99.9, 99.8 and 99.5% and of average size less than one hundred microns, were milled at different times, ranging from 1 hour to 36 hours. In a second step, the nanopowders obtained were characterized by several techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) techniques. The analysis of the results obtained showed the complete formation of the (Fe65Co35) and (Fe65Co35) 90Cr10 phases from 12 hours of grinding. For (Fe65Co35), the remnant field Br and the saturation magnetization Ms have similar evolutions namely, a decrease between 8h and 24h, followed by an increase until the end of the grinding. In addition, the high values of Br and Hc suggest that this system is magnetically hard. The presence of chrome in the ternary (Fe65Co35) 90Cr10 amplifies the maximum value of Hc, while maintaining a similar behavior.
机械合金化铁合金的磁性和组织性能
在本研究中,采用高能机械研磨工艺合成了(x= 0,10)的纳米结构粉末(Fe65Co35) 100-x Crx,通常用于获得软磁体系。为此,分别纯度为99.9、99.8和99.5%、平均尺寸小于100微米的金属元素Fe、Co和Cr在1小时至36小时的不同时间内被铣削。第二步,采用x射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)等技术对制备的纳米粉体进行表征。结果表明,经过12小时的磨削,形成了(Fe65Co35)和(Fe65Co35) 90Cr10相。对于(Fe65Co35),残余场Br和饱和磁化强度Ms具有相似的演化规律,即在8h ~ 24h之间减小,然后增大,直至磨削结束。此外,Br和Hc的高值表明该体系具有磁硬性。铬在三元(Fe65Co35) 90Cr10中的存在使Hc的最大值增大,同时保持了相似的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信