Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yongqiang Li, Nianzhu Wang, Wenkai Yao, Tao Wang, Mao Zhou
{"title":"Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials","authors":"Yongqiang Li, Nianzhu Wang, Wenkai Yao, Tao Wang, Mao Zhou","doi":"10.1177/03093247211029792","DOIUrl":null,"url":null,"abstract":"Improving the impact energy dissipation capacity of functionally graded brittle materials through pore design will help avoid or delay failure. In order to improve the impact energy dissipation capacity of functionally graded brittle materials, pores with specific shapes can be implanted inside them. The effect of pore shape on the impact properties of functionally graded brittle materials was investigated using a lattice-spring model that can quantitatively represent the mechanical properties of functionally graded brittle materials. The calculated results show that the pores with negative Poisson’s ratio such as inner-concave triangle, fourth-order star, and inner-concave hexagon are easy to collapse under the impact, while the square and square-hexagon pores have the strongest resistance to deformation. For all seven pore shapes, the Hugoniot elastic limit of the samples decreased gradually with increasing porosity, and the Hugoniot elastic limit did not change with the change of piston velocity. The propagation velocity of the deformation wave increases with the piston velocity and the velocity of the particle corresponding to the Hugoniot state behind the deformation wave increases accordingly. The principle that pores can enhance the macroscopic impact energy dissipation capacity of functionally graded brittle material samples revealed in this paper will contribute to the prevention of sample impact failure and provide guidance for the optimal design of impact kinetic properties of samples.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211029792","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Improving the impact energy dissipation capacity of functionally graded brittle materials through pore design will help avoid or delay failure. In order to improve the impact energy dissipation capacity of functionally graded brittle materials, pores with specific shapes can be implanted inside them. The effect of pore shape on the impact properties of functionally graded brittle materials was investigated using a lattice-spring model that can quantitatively represent the mechanical properties of functionally graded brittle materials. The calculated results show that the pores with negative Poisson’s ratio such as inner-concave triangle, fourth-order star, and inner-concave hexagon are easy to collapse under the impact, while the square and square-hexagon pores have the strongest resistance to deformation. For all seven pore shapes, the Hugoniot elastic limit of the samples decreased gradually with increasing porosity, and the Hugoniot elastic limit did not change with the change of piston velocity. The propagation velocity of the deformation wave increases with the piston velocity and the velocity of the particle corresponding to the Hugoniot state behind the deformation wave increases accordingly. The principle that pores can enhance the macroscopic impact energy dissipation capacity of functionally graded brittle material samples revealed in this paper will contribute to the prevention of sample impact failure and provide guidance for the optimal design of impact kinetic properties of samples.
孔隙形态对功能分级脆性材料冲击动力学特性的影响
通过孔隙设计提高功能级配脆性材料的冲击耗能能力,有助于避免或延缓材料的破坏。为了提高功能梯度脆性材料的冲击耗能能力,可以在其内部植入特定形状的孔隙。采用能定量表征功能分级脆性材料力学性能的格-弹簧模型,研究了孔隙形状对功能分级脆性材料冲击性能的影响。计算结果表明,内凹三角形、四阶星形、内凹六边形等负泊松比孔隙在冲击作用下容易坍塌,而正方形和方六边形孔隙的抗变形能力最强。对于7种孔隙形态,试样的Hugoniot弹性极限随孔隙率的增加而逐渐降低,且Hugoniot弹性极限不随活塞速度的变化而变化。变形波的传播速度随着活塞速度的增加而增加,变形波背后Hugoniot状态对应的颗粒速度也相应增加。本文揭示的孔隙增强功能分级脆性材料试样宏观冲击耗能能力的原理,有助于防止试样冲击破坏,为试样冲击动力学性能的优化设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信