ENT Rank: Retrieving Entities for Topical Information Needs through Entity-Neighbor-Text Relations

Laura Dietz
{"title":"ENT Rank: Retrieving Entities for Topical Information Needs through Entity-Neighbor-Text Relations","authors":"Laura Dietz","doi":"10.1145/3331184.3331257","DOIUrl":null,"url":null,"abstract":"Related work has demonstrated the helpfulness of utilizing information about entities in text retrieval; here we explore the converse: Utilizing information about text in entity retrieval. We model the relevance of Entity-Neighbor-Text (ENT) relations to derive a learning-to-rank-entities model. We focus on the task of retrieving (multiple) relevant entities in response to a topical information need such as \"Zika fever\". The ENT Rank model is designed to exploit semi-structured knowledge resources such as Wikipedia for entity retrieval. The ENT Rank model combines (1) established features of entity-relevance, with (2) information from neighboring entities (co-mentioned or mentioned-on-page) through (3) relevance scores of textual contexts through traditional retrieval models such as BM25 and RM3.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Related work has demonstrated the helpfulness of utilizing information about entities in text retrieval; here we explore the converse: Utilizing information about text in entity retrieval. We model the relevance of Entity-Neighbor-Text (ENT) relations to derive a learning-to-rank-entities model. We focus on the task of retrieving (multiple) relevant entities in response to a topical information need such as "Zika fever". The ENT Rank model is designed to exploit semi-structured knowledge resources such as Wikipedia for entity retrieval. The ENT Rank model combines (1) established features of entity-relevance, with (2) information from neighboring entities (co-mentioned or mentioned-on-page) through (3) relevance scores of textual contexts through traditional retrieval models such as BM25 and RM3.
ENT秩:通过实体-邻居-文本关系检索主题信息需求的实体
相关工作已经证明了实体信息在文本检索中的有用性;在这里,我们探索相反的方向:在实体检索中利用文本信息。我们对实体-邻居-文本(ENT)关系的相关性进行建模,以派生出一个学习-排序实体模型。我们专注于检索(多个)相关实体的任务,以响应主题信息需求,如“寨卡热”。ENT Rank模型旨在利用半结构化的知识资源(如Wikipedia)进行实体检索。ENT Rank模型将(1)已建立的实体相关性特征与(2)来自相邻实体(共同提及或在页面上提及)的信息通过(3)通过传统检索模型(如BM25和RM3)对文本上下文的相关性评分相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信